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1. Parametric Curves

2. Parametric Surfaces
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Parametric Curves

1. Mathematical Formulations

- Cubic Splines

- Bézier

- B-Spline

- Beta-Spline

- NURBS
2. Interpolation and approximation of curves
3. Analysis of curves
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Cubic Spline (1)

Considering the wooden spline
(virote) a thin elastic beam, and
for small deflections, the

Euler law relates the deflection
of the beam axis y(x) with the
bending moment M(x) by the
expression:

M (x)
" X —
y ( ) El
where:
E - Modulus of Young

I - Moment of inertia of the beam section
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Cubic Spline (2)

Assuming that the beam is simply supported on the weights,
then the bending moment varies linearly between them, i.e.,
M(x) = Ax + B. Replacing in the expression and integrating
results

y(x)= ”%dx = %H(Ax+ B)dx = Ax® + Bx? +Cx+ D

In each segment, the curve can be defined as a function of
the parameter t normalized for the interval [0,1]

P(t)= At* +Bt* +Ct+ D

P(O) =Po
The constants can be obtained from the P()=p
following boundary conditions: P(0) =Tt)
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Cubic Spline (3)

:::::

Finally the curve can be represented in the matrix form as

Pi)=lc t* t 1fH][G]

where
+2 -2 +1 +1 p:
-3 +3 -2 -1 Pia
H — G — I+
=10 o 41 0 [©] T,
+1 0 0 0 T
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Bézier Curves (1)

The curves generally known as Bézier resulted from
separate research from Casteljau (Citroen) and Pierre
Bézier (Renault) in the beginning of the 1960s.

A Bézier curve is defined by:
P(t)=3CBni(t)  for 0<t<1
i=0

where B, ; are the Bernestein base functions, of degree

n!

B, =———(1-0)"'t
v iy Y
n n—igi -
=(ij(1—t) t' fori=0,1 ..., n
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Bézier Curves (2)

:::::

The Bézier curve is tangent to the first and last segments
of the control polygon

The curve order is equal to the number of vertices of the
control polygon.

The curve is entirely contained in the convex hull of the
control points.

P3

PS5

P4
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B-Spline Curves (1)

*+  They were studied by N. Lobatchevsky in the XIX century

*+  Their use for curve fitting o experimental data began in
1946 with Schoenberg

+ They were first intfroduced in CAD systems by J. Ferguson
(Boeing) in 1963. N

Cu(t) = z Pi Ni,k(t)

Where C; are the points of the control polygon and N, are the B-Spline
base functions, of order k, that can be computed by the recursive
expression from Cox/de Boor:

Nio(t)=1 para t<t<ti+1

-0 Defined over a knot
vector
Ni.k(t) = Lot Ni,k—l(t)-f-&NiJrl,k—l(t)
tivk—ti tivk—ti+1 Xz{tlitytsl---!tm}
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B-Spline Curves (2)

+ The knot vector is a non-decreasing sequence of numbers
* The knot vector can be classified as:

Uniform - the increment between knots is constant
{0.0, 05, 10, 15, 20}
- Periodic - the increment is constant and equal to 1
{0,1,2,3,4,5}

- Non-Periodic - the increment of the interior knots constant and
equal to 1 and the knots of the extremities with multiplicity
equal to the order

{0,0,0,1,2,3,4,5,5,5}

- Non-Uniform - the increment of the interior knots not

necessarily constant and the knots of the extremities with

multiplicity equal to the order
{0,0,0,10,14,20,23,3.0,3.0,30}
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The B-Spline curves have the following properties:

* Linear precision

+ Convex hull, in k consecutive control points

* Variation diminishing

* Are invariant when submitted to affine transformations

+ When the order of the B-Spline is equal to the number of
control points, the knot vector consists only in the values of
the extremities with the multiplicity equal to the order

{0,0,0,0,1,1,1,1}

and the B-Spline base functions are equivalent to Bernestein
functions and the curve degenerates into a Bézier curve.
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Os cubic Beta-splines were introduced on 1981 by Barsky

+  They are a generalization of the B-Splines based in notions
of geometric continuity and in the mathematical modeling of
tension

*  The requirements of parametric continuity of the 2% order
(C?) between the B-Splines segments is replaced by the
requirements of geometric continuity of 2% order (G2?) of the
unit tangent vector and of the curvature vector

+ This originates discontinuities of the 1st and 2nd parametric
derivative, that are expressed as functions of the
parameters pl and p2, designated by bias and tension
respectively.
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Beta-Splines (2)

A Beta-spline curve is defined by:

C)= b (A AR, plO<i<l

r=-2

where b, are the base functions
3
b. (B Boiu) =D co (B BU® plO<u<le r=-2-101
g=0

The parametric continuity reflects the fair variation of
the parameterization and not necessarily of the curve

The geometric continuity is a measure of the continuity
that is independent from the parameterization
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y NURBS Curves
ZPIVVI.NI[](U)
Cuy=p0———
Z\NIN,D(U) VoW
= R
aaia
Nio(u)=1 para U< U<Ui1 7T\ g
oXH) >,/ W=1
— 0 gl / Pa
F;\\\ k \ /
u-—ui i
Ni, p(u) = " Ni.p-1(u) + )
i+p—Ui .
Ui -u
P T Nisw p-1(U)
Ui+p+1—Ui+1 X
U ={0,0,0..,0,U, 1, Uy ey Uy, Uy g oo Uy |
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Representation of Conic Shapes (1)

:::::

A NURBS curve of the 2nd degree, with 3 points represents
a conic shape if the conic form factor, k., defined by:

L WLW, e

k =
4w’

¢ Hyperbola

Parabola

Has one of the following values

Ellipse

4k, <1.0=elipse
4k, =1.0= parabola
4k, >1.0= hiperbole
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Representation of Conic Shapes (2)

:::::

To represent a circular arc, the 3 control points [P1, P2, P3]
must be over the vertices of a triangle isosceles

The arc radius obtained is computed by:

2 2
_ (1+ 4b ) where: b= k”-1
4b 2
Complete circumferences can be
represented joining arcs P8 P7 Pe
With 9 points, 4 arcs of 90° can be
Jjoined
X ={0,0,0,025025,0505075075101010}  "1=P° "
W ={10,% 10,%%4 10,%; 10,% 10}
P={R,P,P,P,P,P,P,P,P
{123456789} po P3 Y
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Representation of Conic Shapes (3)

The previous representation can be simplified, removing the
repeated knots 0.25 and 0.75

The result is a circumference represented by only 7 control
points

P6 PS

X = {0,0,0,0.25,0.5,0.5,0.75,].0,].0,].0}
P17 e W ={10,050510,050510}
P= (PP, Py PR R P

P2 P3
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A circumference can also be obtained joining 3 arcs of 120°,
defined by 7 control points.

x =1000122 2101010
3333

W ={10,051,05,10,05,10}
P={P,P,, PP, P, P}
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Representation of Conic Shapes (5)

INETITUTO.
AUFERIGR
TEcMICD

A complete ellipse can be represented applying an affine
transformation to a circumference, for example, one

represented by 7 control points, keeping the distribution of

the weights and the knot vector.

X = {0.0,0.0,0.0,0.25,0.5,0.5,0.75,].0,10,10}
W = {10,05,0510,05,05,10}
P= {Pv R PP R, P7}
P _ P
P R R
B P
M.Ventura Introduction to Geometric 19
Modeling
:
Y Summary - Parametric Curves (1)
Advantages Disadvantages Obs.
Cubic Spline |Interpolates data Can present
points unexpected
inflections
Bézier The control polygon | Global behavior
lies outside the data | pegree increases
points directly with the
increasing humber
of control points
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Summary - Parametric Curves (2)

INETITUTO.
AUFERIGR
TEcMICD

Advantages Disvantages Obs.

B-Spline Local behavior Can NOT
Degree independent | represent conic
of the number of shapes accurately
control points

Beta-Spline | Two additional Used in fairing
parameters to methods
control (bias and
tension)

NURBS Accurate Itis difficult to | State of the art.
representation of take advantage of | Used in most
conics the additional existing CAD

coordinate systems
(weight)
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Curve Generation

Interpolation (curve
contains all the data points)

M.Ventura

" Data points

Approximation (curve
tries to minimize the
distance to all the data

points)

Introduction to Geometric
Modeling

® Data points
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Analysis of Curve Curvature (1)

The curvature of a space curve is defined by:

X'(t) x x"(t)
() - X0 0)
x'(®)
The distribution of this curvature along the curve can be
represented using the method of the "porcupine”

vectors with modules proportional to the values of the
curvature at each point

normal to the curve at that point

oriented to the opposite side of the centre of curvature
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Display scale

Curve Hair

Surface Hair

| . Remove Objects

-
/ 107 4 |» B
Densi [

— |
U N
Add Objects |
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Parametric Surfaces

1. NURBS Surfaces

2. Surfaces Generation
Extrusion
Lofting
Sweeping
Revolution
6rid Interpolation
Primitives

3. Surface Analysis

+  Shading

Contours
Curvatures
Isophotes
Reflection Lines
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NURBS Surfaces

+ A NURBS surface of degree (k) in the directions (u,v) is
defined by the expression:

Zn‘,ipi-i Wi . Nik(u)M j.l(v)

S(u,v) = =%
ZZWi'j,Ni,k(U)M J.,,(v)
i=0 j=0
Nio(u)=1 p/ u<u<uUi+1 Mio(v)=1 p/ V; SV<Via
Ni k(u) = u-u Ni k- 1(u) + M _ VoV
: ) S ji(v) = Mij.1-1(v) +
Ui +k— Ui Vit 1=V
Ui+k-U
——— Ni+1x-1(u) ViV ey
Ui+k—Ui+1 Vi it j+11-1(V)
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Extrusion

Trajectory (directriz)
%'Ie (geratriz)
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Lofting in Shipbuilding

INETITUTO.
AUFERIGR
TEcMICD

The designation /ofting has
origin in shipbuilding
Designates the
development of the ship
hull surface interpolating
the shape of a set of cross
sections, that was carried
out in the loft room (sa/a

do risco)

The primitive building process was
similar to the modeling process,
using the frames to shape the hull
surface form.
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Sweeping
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Profile (geratriz)
ST~
/ -

Trajectory (directriz)
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/ Profile (geratriz)

Axis (Eixo de rotagdo)
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Edge Curves

Surfaces _—
defined by 2, ’

3,0r 4 edge / ” -
curves | S \\
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v Grid Interpolation

+ Surface generated from a regular grid of curves

* Provide a better control over the inner shape of the surface

.v"/" |
/.\.__.‘:/’ - \\ B __\
\_‘\( \ e -
\_w;.l,::-j e
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\v Elementary Primitive Shapes
+ Box
@ + Cone
% - Cylinder
* Sphere
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Shading
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Surface Analysis - Contours

Contours
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Isophotes:
Analyze/Surface/Zebra

Lines of constant light intensity,
created by a set of parallel light
sources, with a given direction, L

n-L=cosa

M. Ventura
Modeling
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Surface Analysis - Isophotes

Zebra Options 1|
Stripe direction ——
" Haorizontal
1« Yerical

Stripe size

Thin -

Stripe color

v Showisocurve
Adjust Mesh...
Add Objects

Femowve Objects
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Mean Curvature
1y _ 2FM —(EN +GL)

2(EG-F?)
Gauss Curvature
2
K — LN M2
EG-F

1st Fundamental Form Coefficients
E=r.r, F=r.r, G=r.r

2nd Fundamental Form Coefficients
L=nr, M=nur,

M. Ventura
Modeling

N =n.r,

Introduction to Geometric

Surface Analysis - Curvature

Curvatures expressed as
a function of the max.
and min. curvatures

1
H=—(x. +x
2( min max)

K = Kmin Kmax

Surface normal unit

vector
n=|:“z:v| p/|r, xr,|#0
u \
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Mean Curvature

Curvature [

Style ————— . . .
. Mean Curvature distribution

Curvature range

L [ca—

II-UW
Auto Range
Max Range

[~ Showisocurve

Adjust Mesh

Add Objects

Remove Ohjects
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Gauss Curvature

Curvature : x|
Stle —
G A . . .
aesen X Gauss Curvature distribution
Curvature range
P o
I-D.W
Auto Range
Max Range
[~ Showisocurve .
e K<O Surface with double
ol curvature (saddle shape)
Remave Objects K=0  Developable surface
K>0  Surface with single curvature
(concave or convex)
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