

INITIUTO HENICO	B-Spline Curves (2)	
・ The kno ・ The kno	t vector is a non-decreasing sequence of nu t vector can be classified as:	mbers
- Unifo	orm - the increment between knots is constant	
- Perio	dic - the increment is constant and equal to 1 { 0, 1, 2, 3, 4, 5 }	
- Non- equal equal	Periodic - the increment of the interior knots co to 1 and the knots of the extremities with multi to the order	nstant and plicity
	{ 0, 0, 0, 1, 2, 3, 4, 5, 5, 5 }	
- Non- neces multi	Uniform - the increment of the interior knots no ssarily constant and the knots of the extremities plicity equal to the order	t s with
	{ 0, 0, 0, 1.0, 1.4, 2.0, 2.3, 3.0, 3.0, 3.0 }	
M.Ventura	Introduction to Geometric Modeling	10

	Advantages	Disadvantages	Obs.
Cubic Spline	Interpolates data points	Can present unexpected inflections	
Bézier	The control polygon lies outside the data points	Global behavior Degree increases directly with the increasing number of control points	

NUMERIOR TECNICO				
	Advantages	Disvantages	Obs.	
B-Spline	Local behavior Degree independent of the number of control points	Can NOT represent conic shapes accurately		
Beta-Spline	Two additional parameters to control (bias and tension)		Used in fairing methods	
NURBS	Accurate representation of conics	It is difficult to take advantage of the additional coordinate (weight)	State of the art. Used in most existing CAD systems	

	Parametric Surfaces	
	1. NURBS Surfaces	
	2. Surfaces Generation	
	• Extrusion	
	 Lofting 	
	• Sweeping	
	Revolution	
	 Grid Interpolation 	
	Primitives	
	3. Surface Analysis	
	 Shading 	
	• Contours	
	 Curvatures 	
	 Isophotes 	
	Reflection Lines	
M.Ventura	Introduction to Geometric 25 Modeling	

