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Summary

1. Parametric Curves 

2. Parametric Surfaces
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Parametric Curves

1. Mathematical Formulations
– Cubic Splines
– Bézier
– B-Spline
– Beta-Spline
– NURBS

2. Interpolation and approximation of curves
3. Analysis of curves
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Cubic Spline (1)

Considering the wooden spline
(virote) a thin elastic beam, and 
for small deflections, the  
Euler law relates the deflection 
of the beam axis y(x) with the 
bending moment  M(x) by the 
expression:

( )′′ =y x M x
EI
( )

where:

E – Modulus of Young

I – Moment of inertia of the beam section
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Cubic Spline (2)

• Assuming that the beam is simply supported on the weights, 
then the bending moment varies linearly between them, i.e., 
M(x) = Ax + B. Replacing in the expression and integrating 
results

( )y x M x
EI
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In each segment, the curve can be defined as a function of 
the parameter t normalized for the interval [0,1]

The constants can be obtained from the 
following boundary conditions:
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Cubic Spline (3)

Finally the curve can be represented in the matrix form as
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Bézier Curves (1)

• The curves generally known as Bézier resulted from  
separate research from Casteljau (Citroen) and Pierre 
Bézier (Renault) in the beginning of the 1960s.

• A Bézier curve is defined by:
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where Bn,j are the Bernestein base functions, of degree n
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Bézier Curves (2)

• The Bézier curve is tangent to the first and last segments 
of the control polygon

• The curve order is equal to the number of vertices of the  
control polygon.

• The curve is entirely contained in the convex hull of the  
control points.
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B-Spline Curves (1)

• They were studied by N. Lobatchevsky in the XIX century
• Their use for curve fitting to experimental data began in 

1946 with Schoenberg
• They were first introduced in CAD systems by J. Ferguson 

(Boeing) in 1963.
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Where Ci are the points of the control polygon and Ni,k are the B-Spline
base functions, of order k, that can be computed by the recursive 
expression from Cox/de Boor:

Defined over a knot  
vector
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B-Spline Curves (2)

• The knot vector is a non-decreasing sequence of numbers 
• The knot vector can be classified as:

– Uniform – the increment between knots is constant
{ 0.0,  0.5,  1.0,  1.5,  2.0 }

– Periodic – the increment is constant and equal to 1
{ 0, 1, 2, 3, 4, 5 }

– Non-Periodic – the increment of the interior knots constant and 
equal to 1 and the knots of the extremities with multiplicity 
equal to the order

{ 0, 0, 0, 1, 2, 3, 4, 5, 5, 5 }
– Non-Uniform - the increment of the interior knots not 

necessarily constant and the knots of the extremities with 
multiplicity equal to the order

{ 0, 0, 0, 1.0, 1.4, 2.0, 2.3, 3.0, 3.0, 3.0 }
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B-Spline Curves (3)

The B-Spline curves have the following properties:
• Linear precision
• Convex hull, in k consecutive control points
• Variation diminishing
• Are invariant when submitted to affine transformations
• When the order of the B-Spline is equal to the number of 

control points, the knot vector consists only in the values of 
the extremities with the multiplicity equal to the order

{ 0, 0, 0, 0, 1, 1, 1, 1 }
and the B-Spline base functions are equivalent to Bernestein
functions and the curve degenerates into a Bézier curve.
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Beta-Splines (1)

• Os cubic Beta-splines were introduced on 1981 by Barsky
• They are a generalization of the B-Splines based in notions 

of geometric continuity and in the mathematical modeling of 
tension

• The requirements of parametric continuity of the 2ª order 
(C2) between the B-Splines segments is replaced by the  
requirements of geometric continuity of 2ª order (G2) of the 
unit tangent vector and of the curvature vector 

• This originates discontinuities of the 1st and 2nd parametric 
derivative, that are expressed as functions of the  
parameters β1 and β2, designated by bias and tension, 
respectively.
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Beta-Splines (2)

• A Beta-spline curve is defined by:
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where bγ are the base functions

• The parametric continuity reflects the fair variation of 
the parameterization and not necessarily of the curve

• The geometric continuity is a measure of the continuity 
that is independent from the parameterization
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NURBS Curves
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Representation of Conic Shapes (1)

• A NURBS curve of the 2nd degree, with 3 points represents 
a conic shape if the conic form factor, kc, defined by:
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Has one of the following values
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Representation of Conic Shapes (2)

• To represent a circular arc, the 3 control points [P1, P2, P3] 
must be over the vertices of a triangle isosceles

• The arc radius obtained is computed by:
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• Complete circumferences can be  
represented joining arcs

• With 9 points, 4 arcs of 90˚ can be 
joined
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Representation of Conic Shapes (3)

• The previous representation can be simplified, removing the 
repeated knots 0.25 and 0.75

• The result is a circumference represented by only 7 control 
points
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Representation of Conic Shapes (4)

A circumference can also be obtained joining 3 arcs of 120˚, 
defined by 7 control points.
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Representation of Conic Shapes (5)

• A complete ellipse can be represented applying an affine 
transformation to a circumference, for example, one 
represented by 7 control points, keeping the distribution of 
the weights and the knot vector.
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Summary - Parametric Curves (1)

Global behavior
Degree increases 
directly with the 
increasing number 
of control points

The control polygon 
lies outside the data 
points

Bézier

Can present 
unexpected 
inflections

Interpolates data 
points

Cubic Spline

Obs.DisadvantagesAdvantages
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Summary - Parametric Curves (2)

Used in fairing 
methods

Two additional  
parameters to 
control (bias and 
tension)

Beta-Spline

State of the art.
Used in most 
existing CAD 
systems

It is difficult to 
take advantage of 
the additional 
coordinate 
(weight)

Accurate 
representation of  
conics

NURBS

Can NOT  
represent conic 
shapes accurately

Local behavior
Degree independent 
of the number of  
control points

B-Spline

Obs.DisvantagesAdvantages

M.Ventura Introduction to Geometric 
Modeling

22

Curve Generation

Interpolation (curve 
contains all the data points)

Approximation (curve 
tries to minimize the 
distance to all the data 
points)
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Analysis of Curve Curvature (1)

• The curvature of a space curve is defined by:

( )κ t
x t x t

x t
=

′ × ′′
′

( ) ( )
( ) 3

• The distribution of this curvature along the curve can be 
represented using the method of the “porcupine”

• vectors with modules proportional to the values of the 
curvature at each point 

• normal to the curve at that point 

• oriented to the opposite side of the centre of curvature
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Analysis of Curve Curvature (2)
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Parametric Surfaces

1. NURBS Surfaces
2. Surfaces Generation

• Extrusion
• Lofting
• Sweeping
• Revolution
• Grid Interpolation
• Primitives

3. Surface Analysis
• Shading
• Contours
• Curvatures
• Isophotes
• Reflection Lines
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NURBS Surfaces

• A NURBS surface of degree (k,l) in the directions (u,v) is 
defined by the expression:
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Extrusion

Trajectory (directriz)

Profile (geratriz)
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Lofting

Sections
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Lofting in Shipbuilding

• The designation lofting has  
origin in shipbuilding

• Designates the 
development of the ship 
hull surface interpolating 
the shape of a set of cross 
sections, that was carried 
out in the loft room (sala
do risco)

The primitive building process was 
similar to the modeling process, 
using the frames to shape the hull 
surface form.
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Sweeping

Trajectory (directriz)

Profile (geratriz)
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Surfaces of Revolution

Axis (Eixo de rotação)

Profile (geratriz)
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Edge Curves

Surfaces
defined by 2, 
3, or 4 edge
curves
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Grid Interpolation

• Surface generated from a regular grid of curves
• Provide a better control over the inner shape of the surface
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Elementary Primitive Shapes

• Box

• Cone

• Cylinder

• Sphere
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Surface Analysis - Shading

Shading
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Surface Analysis - Contours

Contours
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Surface Analysis - Isophotes

Isophotes:

Analyze/Surface/Zebra

Lines of constant light intensity, 
created by a set of parallel light 
sources, with a given direction, L

αcos=⋅Ln
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Surface Analysis – Curvature

Mean Curvature
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Mean Curvature

Mean Curvature distribution
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Gauss Curvature

K < 0 Surface with double 
curvature (saddle shape)

K = 0 Developable surface

K > 0 Surface with single curvature 
(concave or convex)

Gauss Curvature distribution


