Preparação do Material

Desempeno na Fieira

Desempeno por Estancação

- Por passes circulares
- Por passes radiantes
- Por passes paralelos

Não martelar junto ao bordo

Desempeno por Estiramento

Aplica-se em siderurgias

Desempeno por Processos Térmicos

Calores a meia espessura

- Aquecimento rápido
- Gradiente de temperaturas ao longo da chapa e da espessura
- Contracção no arrefecimento

Características mais importantes:

- Coeficiente de dilatação térmica
- Tensão de cedência Variação com a temperatura
- Coeficiente de Poisson Variação com a temperatura

Métodos mais utilizados:

- Ventosas
- Calores lineares

Calores a toda a espessura

Inverso do método de estancação

Não se aplica aos alumínios (condutividade térmica)

Elementos informativos

Corte: Moldes e Cérceas

Enformação: Cérceas e Carcaças

Montagem: Berços

Corte

Corte térmico

Oxicorte

• Combustíveis: acetileno e propano

• Comburente: oxigénio

Modo operatório:

• Aquecimento da chapa a 1300° C

• Projecção de jacto de oxigénio puro concentrado

Capacidade de corte: 150 mm em aço carbono

Espessura do aço (mm)	Pressão de O ₂ (Kg/cm ²)	Litros/metro de Acetileno	Litros de O ₂ / metro	Velocidade de corte (m/h)
3	1,5	10	55	22
5	2,5	12	75	20
10	3	17	120	18
20	3,5	25	225	15
30	4	40	350	12
40	5	50	450	10
50	5,5	60	600	8

Corte por arco eléctrico - Arc Air (Abrir a carvão)

Função: abertura de raíz de chanfros

Método: fusão por arco eléctrico + limpeza por sopro de ar

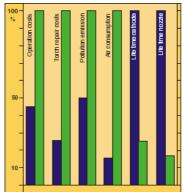
Eléctrodos: peça + eléctrodo de carvão Tipo de corrente mais comum: Contínua

Regulação da corrente em função do diâmetro do eléctrodo

4mm – I= 80 a 180 A 16mm – I= 600 a 1000 A

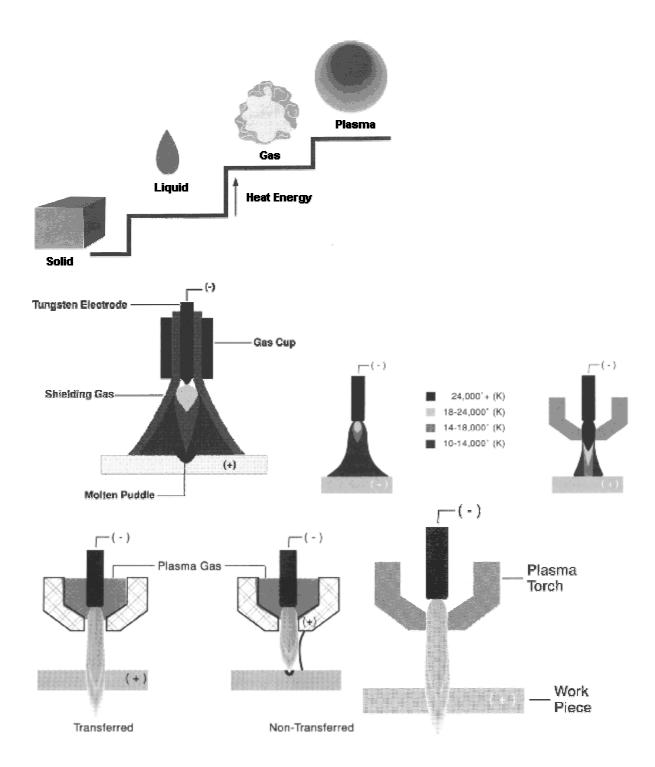
Espessura de corte: inclinação + velocidade de avanço + intensidade

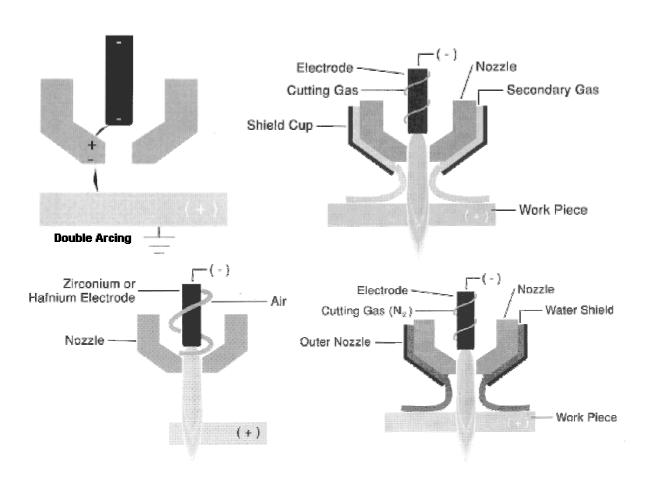
Corte por Plasma

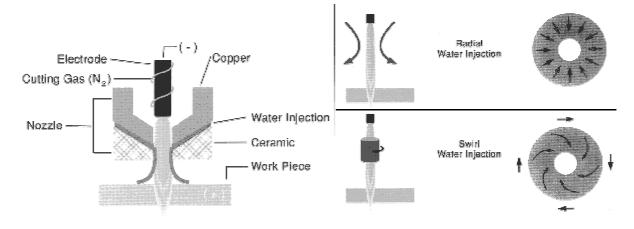

Gases de plasma: Argon + hidrogénio

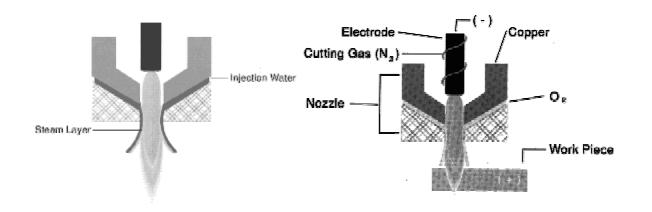
Gases do processo: Ozono e óxidos de azoto

Utilização: materiais não ferrosos de elevada espessura Arrefecimento: água ou ar comprimido (até 12 mm) Eléctrodos: Tungsténio, cobre, zircónio, háfnio




Technical data


Туре	CUTLINE 10G	CUTLINE 20G	CUTLINE 40G	CUTLINE 20W	CUTLINE 40W
Mains voltage, 50 Hz (V), 3 phase	230 / 400	230 / 400	400	230 / 400	400
Mains fuse, slow (A)	16 / 10	35 / 25	35	35 / 25	35
SPECIAL mains voltage, 50 Hz (V)	500	500	500	500	500
EXECUTION mains fuse, slow (A)	6	25	25	25	25
Connecting power (kVA)	8	16	24	16	24
Protection class	IP 22	IP 22	IP 22	IP 22	IP 22
Insulation class	F	F	F	F	F
Open circuit voltage (V)	275	275	275	275	275
Cutting current (A)	30	30 / 60	60 / 120	25 / 50	50 / 100
Duty cycle (%)	35	50	50	60	60
Cutting thickness 1) quality cut (mm)	6	15	30	15	30
max. cut (mm)	12	20	40	20	40
Plasma gas	air				
Ignition	high voltage				
Weight (kg)	38	74	122	84	132
Dimensions (L x W x H) (mm)	320x420x985	670x490x880	820x490x880	670x490x880	820x490x880


Torch type for plasma cutting unit	PB-S10 LH CUTLINE 10G	PHT-30 G/L CUTLINE 20G	PHT-40 G/L CUTLINE 40G	PHT-30 W/L ⁴ CUTLINE 20W	PHT-45 W/L ⁴ CUTLINE 40W
Cutting current (A)	45	70	120	80	130
Hose parcel length (m)	4	6	6	6 (10) ³⁾	6 (10) ³⁾
Cooling	air			water	
Air pressure (MPa/bar)	0,4 / 4	0,5/5	0,5/5	-	-
Air consumption (I/min)	90	100	130	-	-
Ignition	high voltage				
Plasma gas air 2) pressure (MPa/bar)	0,4 / 4	0,5/5	0,5/5	0,5/5	0,5/5
flow rate (I/min)	15	17	20	25	25
Total air consumption (I/min)	105	117	150	25	25
Main arc start	Full-automatic power increase after workpiece contact through pilot arc				
Protective circuit	Protective cap with safety cut-off				

1) material depending, standard qualities
2) pressure and flow rate adaptations to work conditions possible
3) optimum
4) plasma torches with FineFocus-technology

Corte a LASER

'Light Amplification by Stimulated Emission of Radiation'

Componentes principais:

- 1. Meio activo
 - Gás CO, He-Ne, Kr, Ar
 - Sólido Nd/YAG, Nd/Vidro, Rubi, Alexandre
 - Liquido Rodamina/Alcool
- 2. Espelho totalmente reflector
- 3. Espelho parcialmente reflector
- 4. Fonte de bombardeamento
 - Eléctrica
 - Química
 - Óptica
 - LASER

Características da radiação:

Mesma fase

Mesma direcção

Mesmo comprimento de onda

Sistemas LASER

Operações a executar

Materiais envolvidos

Dimensões das peças

Velocidade de processamento

Precisão requerida

Características do Equipamento

Potência máxima: Soldadura-3kW; Corte-1,5kW

Diametro do feixe

Modo Electromagnético Transverso

Simetria e estabilidade do Feixe

Comprimento de onda

Posicionamento

Sistemas X-Y de mesa móvel

Ópticas flutuantes

Sistemas híbridos

Mecanismos de Corte

1. Vaporização

Pode provocar fractura frágil por gradiente térmico ou onda de choque Remoção de impurezas e óxidos

2. Fusão

$$V = \frac{P\eta}{C_p T_f le}$$

V-velocidade de corte (m/min)

P-potencia do feixe (W)

η-rendimento do processo

C_p-calor latente de fusão

T_f-temperatura de fusão (°C)

l-largura de corte (m)

e-espessura do material (m)

3. Fusão reactiva

Utiliza gás reactivo como auxiliar de corte

4. Degradação química

Hidrocarbonetos decompoem-se em C e água

5. Fractura controlada

Aplicações

Aços não ligados - 10mm

Aços inoxidáveis – 5mm

Aços ferramenta - dificil

Alumínio – 4mm

Cobre – dificil

Polímeros – toxidade

Madeiras

Compósitos

Vantagens comparativa:

Velocidade de corte elevada

Pequena largura de corte

ZTA estreita

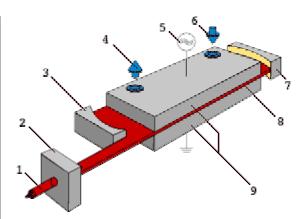
Baixas distorções

Bom acabamento superficial

Flexibilidade

Ausência de força de corte

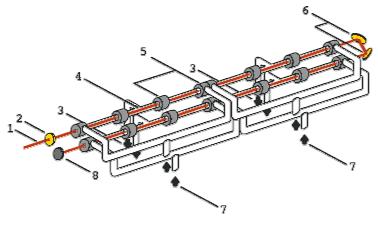
Possibilidade de automação


Desvantagens comparativas:

Custo inicial

Limitações de espessura

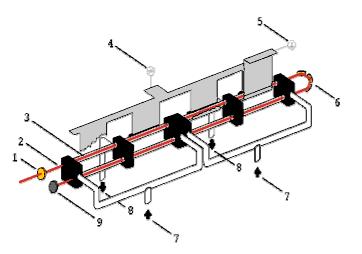
Reflectividade do material


- 1. Laserbeam
- 2. Beam shaping unit
- 3. Output mirror
- 4. Cooling water
- 5. RF excitation
- 6. Cooling water
- 7. Rear mirror
- 8. RF excited discharge
- 9. Waveguiding electrodes

LASER de 2 kW


SM-series principle:

- 1. Laserbeam
- 2. Output mirror
- 3. Gas outlet
- 4. DC excited discharge
- 5. DC electrodes
- 6. Fold mirrors
- 7. Gas inlet
- 8. Rear mirror


Four Invar tubes are used to hold the two endplates at precise distance apart. This forms a rigid assembly onto which all optical components are mounted. The discharge tubes are supported on a polymer concrete composite section, thereby ensuring adjustment-free optical alignment with high mechanical and thermal stability even in case of exchanging components in the discharge region.

LASER de 8kW

- 1. Laserbeam
- 2. Tangential blower
- 3. Gas flow direction
- 4. Heat exchanger
- ⁵5. Rear mirror with real time power monitor
 - 6. Fold mirror
 - 7. HF-electrodes
 - 8. Output mirror
 - 9. Output window

Laser de 20 kW

- 1. Laserbeam
- 2. Output mirror
- 3. RF excited discharge
- 4. RF excitation
- 5. Ground potential
- 6. Fold mirrors
- 7. Gas inlet
- 8. Gas outlet
- 9. Rear mirror

Màquinas de Jacto de Água

EQUIPMENT50 and 100 hp Pumps

Corte mecânico

Tesoura – Guilhotina

Capacidade: 5m de comprimento e 50mm de espessura

Fixação: Grampos, macacos hidraúlicos

Método: Tensão de corte

Esforço: $P=0.67 e^2 R_m / tg \alpha$

P = carga a aplicar na lâmina superior

e = espessura da chapa

 R_m = tensão de rotura ao corte

 α = ângulo formado pelas lâminas de corte

Folga = até 0,4mm

Tesouras alternativas (tipo PULLMAX)

Movimento alternativo das tesouras (1000 a 2000 ciclos por minuto)

Tesouras curtas

Velocidade de corte: 4 m/min

Plaina