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This paper deals with the use of a simple parametric design method applied to simple
hull lines, such as sailing ship hulls and round bilge hulls. The described method
allows the generation of hull lines that meet hydrodynamic coefficients imposed by
the designer, obtaining more flexibility than with normal affine transformations of a
parent hull. First, a wire model of the ship stations is made with the use of explicit
curves. The method is completed with an automatic surface modeling of the previ-
ously generated offsets. The construction of spline curves and their application in the
definition of ship lines are reviewed. Approximation of spline curves fitting the data on
the stations is made, with special emphasis on the choice of parametrization, which
is relevant to increasing the accuracy of the splines. B-spline surface modeling of the
hull and the fairing process adapted to maintain certain ship characteristics are
described. Some examples of the generation, lofting, and fairing process are pre-
sented.
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1. Introduction

SHIP DESIGN is mainly based on the extensive use of hull data-
bases, and on the designer’s experience. In the past it was con-
sidered a kind of art, where the experienced designer could imag-
ine the flow lines around the ship hull and the design was a
combination of the experience and certain rules that had been
successfully used in previous designs. Today, computers and de-
sign programs have opened the field of lines design to a wider
scope of people. A new field of research called computer-aided
ship hull design (CASHD) evolved in the second part of the last
century and some computational methods have been reported in
recent years (see, e.g., Harries 1998, Kim et al. 1996, Rabien 1996,
Tuohy et al. 1996, Kerczek & Stern 1983).

In this paper, parametric generation of hull lines is applied to
simple hull forms, such as round bilge lines, normally used in
patrol boat hulls or sailing ships. These lines are suitable for this

simple method in so far as they have no bow bulbs, integrated
skegs, or other complex parts.

The presented method starts with the generation of an offset-
based representation, which meets certain hydrodynamic coeffi-
cients imposed by the designer. These coefficients are based on
the sectional area curve and on the waterplane, as detailed in
section 3. This is done with the use of explicit curves in section 4,
and a basic fairing can be made, as explained in section 6. The
design method considers both the underwater and the above-water
part of the ship, which is described in section 5.

Once the hull offsets are obtained, the nonuniform rational B-
spline (NURBS) surface modeling can begin, as described in sec-
tion 7. A brief background on splines, which are used as approxi-
mating curves of the station offsets, is outlined in section 7.1 with
special emphasis on the choice of the parametrization to increase
the accuracy of the spline fitting. Based on these approximating
splines, a NURBS surface is created, as described in section 7.8.
The surface fairing is studied thoroughly in section 8. Finally, a
sailing cruise ship is generated, creating first the wire model for its
station and then a faired NURBS surface according to the method.
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For this example, a small prototype was constructed with the
surface information generated with this work.

2. Hull shape parametric design

Generally, CASHD can be subdivided into shape representation
and shape design. While the former is concerned with accurately
reproducing a previously known hull geometry in computer for-
mat, the latter mainly deals with the ab initio modeling of a new
hull form. A parametric design of the ship hull means that the
underwater part of the ship and the above-water part must include
some parameters imposed by the designer. For the underwater
part, the parameters are well known: block coefficient, LCB, Awp;
but they can be more complex or not so intuitive, such as certain
angles used to define the bow flare, or those related to the defi-
nition of bulbous shapes.

Once the main dimensions of the ship have been selected from
regression analysis of similar vessels, owner’s requirements, or
shipyard restrictions, the hull designer chooses, more often than
not, to base the design on a suitable hull form of known perfor-
mance. If this hull is not at hand or the selection is not adequate
for the requirements, problems are likely to appear in later stages
of the ship design process.

The base design selected is usually one of sufficiently good
performance and previously used in other projects. In many cases
innovative designs are deemed too risky and discarded. In the case
of sailing vessels, hull characteristics must comply with deter-
mined ratios depending on the vessel class, thus constraining in-
novation in the design of hull appendages.

It is possible to adjust the main dimensions and some form
coefficients of the base ship by means of parametric transforma-
tions, but not all of them in a simple way. In addition, the trans-
formation cannot be successful if the differences between the base
ship and the required ship are important.

The presented method is based on the design of the sectional
area curve and of the waterplane. The design of the sectional area
curve is a very important aspect that has a direct influence on the
performance characteristics of the vessel. The basic “rules of
thumb” state clearly to get away from hard shoulders and follow
certain criteria (see, e.g., Saunders 1957) to locate the center of
buoyancy. The sectional area curve and the design waterplane also
have a direct influence on the phase between the bow and stern
wave trains generated by the hull while the smoothing of shoulders
in the sectional area curve affects their amplitude. In addition, the

half entrance angle of the waterline influences both the phase and
amplitude of the wave trains, and the design waterplane is directly
related to the ship’s transverse stability.

After the preliminary body plan has been obtained by any tra-
ditional method, it is time to continue through the design process:
general arrangement, weight estimation, naval architecture calcu-
lations, and so forth. It is not uncommon, however, to perform
several modifications to this preliminary hull shape in order to get
a balanced design that meets most or all of the requirements. This
process of modification and recreation of a new hull shape is,
more often than not, quite costly in terms of time and resources
(Hamalainen 2002), and it is clearly improved with a parametric
generation of the hull.

As is commonly known for the practicing naval architect, if the
preliminary project is not adequately carried out, any changes in
the design introduced when the building is already in progress are
not only time consuming but represent an increase in the budget.
The key idea is then to check early in the project development how
modifications affect power and speed predictions, stability, gen-
eral arrangement, and so forth by making use of the appropriate
tools (computational fluid dynamics [CFD], etc.) and, in case of
conflicting changes, try to come up with a compromise solution. It
is in this context that the parametric generation of the hull shape
rises as a helpful tool for the designer.

In any case, the importance of the experience of the designer
must never be underestimated, in spite of the greater number of
numerical tools currently available for the naval architect. The
combination of such experience with an adequate tool set will
allow the designer to find any critical issues in the hull shape
design and to eliminate or compensate for them more quickly and
precisely than in the past.

3. Basis of the method

The basis of the proposed method lies in working with the
sectional area curve as well as with the waterplane half-breadths
curve.

These two curves will be defined mathematically, as is further
explained in the following subsection, to be modified later by the
designer, for instance, to increase the beam on a certain zone by
moving the waterplane center of gravity, but always keeping the
curves smooth and without inflections. These new variations will
consequently introduce changes in the main hull shape parameters
that were selected during the first approximation.

Nomenclature

�e � entrance angle of SAC
�nc � angle of the nth station at the deck
�nf � angle of the nth station at the

waterplane
�s � trailing angle of SAC

�ae � half entrance angle of waterplane
�as � half trailing angle of waterplane

� � displacement
A0 � transom wetted area
An � wetted area of the nth station

Awp � waterplane area
Ax � maximum midship area
B0 � transom wetted half breadth
Bn � half breadth of the nth station at the

waterplane

Bx � maximum half breadth
Gs � global fairness parameter
kn � deadrise at the nth station

LCB � center of buoyancy
LCF � center of flotation
LCX � position of the maximum midship

area
LCXF � position of the maximum half breadth

Lkl � local fairness parameter
LWL � length in waterline
m + 1 � number of control points of the

spline
n � degree of the spline

Nj
n � jth basis function of a spline with n

degree

p�n, q�n � coefficients of the nth station
(above water)

pn, qn � coefficients of the nth station
(under water)

s(u) � spline curve as a function of u
parameter

s(u, v) � NURBS surface
SAC � sectional area curve

T � draft
Tn � draft at the nth station
u � parameter (vertical)

ui, vi � knots of the spline or surface
v � parameter (longitudinal)

Vj � jth control point of a spline
Xj Yj(X,Y) � coordinates of the Vj control point
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3.1. Sectional area curve definition

The method described here makes use of a sectional area curve,
which is parameterized by the designer using the following mag-
nitudes, commonly used by the naval architect:

• Displacement in cubic meters (�)
• Longitudinal position of the center of buoyancy (LCB)
• Maximum midship area (Ax)
• Longitudinal position of maximum midship area (LCX)
• Waterline length (LWL)
• Entrance angle in the bow (�e)
• Trailing angle in the stern (�s)
• Transom wetted area (A0).

These parameters can be obtained based on experience, similar
vessels, or from literature (see, e.g., chapter 11 of Lamb 2003 or
chapter 1 of Lewis 1987).

To generate the curve mathematically, two fourth-degree poly-
nomials are used, one of them for the aftbody (y1) and the other for
the forebody (y2), as shown in Fig. 1. All lengths are made di-
mensionless with LWL and the areas with Ax. In order to obtain
the values of the polynomial coefficients, we require a total of 10
conditions for both curves, which are obtained by imposing the
following conditions:

Aft body: y1�x� = A4 � x4 + A3 � x3 + A2 � x2 + A1 � x + A0 (1)

Transom area: y1(0) � A0 � transom area/Ax
Stern angle � �s: y�1(0) � tg(�1) � LWL/Ax · tg(�s)
Maximum in LCX: y1(xm) � 1; with xm = LCX/LWL; y1(xm) � 0

Fore body: y2�x� = B4 � �x − xm�4 + B3 � �x − xm�3 + B2 � �x − xm�2

+ B1 � �x − xm� + B0 (2)

Maximum in LCX: y2(xm) � 1: y�2(xm) � 0
Bow angle � �e: y�2(1) � tg(�2) � LWL/Ax � tg(�e)
Waterline length: y2(1) � 0

Fore body and aft body

Displacement: �
0

xm
y1�x� dx + �

xm

1
y2�x� dx = Cx =

�

Ax � LWL

Center of buoyancy: �
0

xm
x � y1�x� dx + �

xm

1
x � y2�x� dx =

LCB

LWL
� Cx

As a result of the application of the above conditions, a linear
system of 10 unknowns (the polynomial coefficients A0 . . . A4 and
B0 . . . B4) is obtained and then solved numerically.

3.2. Waterline definition

To proceed with the definition of the waterline curve, or half-
breadths curve, we follow a procedure analogous to that described
to generate the sectional area curve. We can either take an existing
waterline from a previous design or generate a new one math-
ematically from a set of parameters commonly used by the naval
architect.

The parameterization chosen for the waterline curve is as fol-
lows:

• Waterplane area (Awp)
• Longitudinal position of flotation center (LCF)
• Maximum half-breadth (Bx)
• Longitudinal position of maximum half-breadth (LCXF)
• Waterline length (LWL)
• Waterline half entrance angle in bow (�ae) and half trailing

angle in stern (�as)
• Transom wetted half-breadth (B0).

As for the case of the sectional area curve, two fourth-degree
polynomials are used to define the waterline curve, one for the
aftbody (w1) and the other for the forebody (w2), as shown in Fig.
2. All lengths are made nondimensional with LWL and all
breadths with Bx. In order to solve for the polynomial coefficients,
the following conditions are imposed:

Aft body: w1�x� = C4 � x4 + C3 � x3 + C2 � x2 + C1 � x + C0 (3)

Beam on transom: w1(0) = C0 � beam on transom/Bx
Half trailing angle � �s: w�1(0) = tg(�1) � LWL/Bx · tg(�s)
Maximum in LCXF: w1(xmw) � 1 with xmw = LCXF/LWL;
w�1(xmw) � 0

Fore body: w2�x� = D4 � �x − xmw�4 + D3 � �x − xmw�3

+ D2 � �x − xmw�2 + D1 � �x − xmw� + D0 (4)

Maximum in LCX: w2(xmw) � 1; w�2(xmw) � 0
Half entrance angle � �e: w�2(1) = tg(�2) � LWL/Bx · tg(�e)
Waterline length: w2(1) � 0

Fore body and aft body:

Waterplane area:�
0

xmw
w1�x� dx +�

xmw

1
w2�x� dx = Cwp =

Awp

Bx � LWL

Center of flotation:�
0

xmw
x � w1�x� dx +�

xmw

1
x � w2�x� dx =

LCF

LWL
� Cwp

Fig. 1 Polynomial definition of sectional area curve Fig. 2 Polynomial definition of waterline curve
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Once again we arrive at a linear system of 10 unknowns that is
solved numerically to determine the actual values of the polyno-
mial coefficients.

The parameterization of the waterline curve can be extended by
taking into account a transverse metacentric radius (BM) selected
by the designer through the existing relationship between the mo-
ment of inertia of the waterplane area with respect to the longi-
tudinal axis and BM.

As we have introduced a new parameter, the polynomial defin-
ing the aftbody shape is changed to one of fifth degree, w*1(x).
With this new definition and knowing that GM � KB + BM – KG,
if we estimate the height of the center of gravity (KG) and the
height of the center of buoyancy (KB), it is possible to impose a
value of GM, a magnitude directly related to the stability. Thus,
we impose the additional condition BM � GM – KB + KG.

BM:
2

3 �
0

xmw�w*1�x�

2 �3

dx +
2

3 �
xmw

1 �w2�x�

2 �3

dx =
BM � �

B3
x � LWL

We have obtained now a total of 11 unknowns to be solved by
numerical means as in the previous cases. It is convenient, once
the hull shape is generated as explained in section 0, to check that
the calculated KB is near the estimated value used to calculate BM.

It is beyond the scope of this paper to discuss the mathematical
relationships between the different unknowns of the linear systems
that define the sectional area curve and the waterline that gives a
determinate equation system with valid solutions. For example, a
combination of Xm � 0.1 · Lwl, LCB � 0.9 · Lwl, and a block
coefficient of 0.1 in the sectional area curve does not give a valid
solution. The use of normal design parameters and common sense
is the better choice to obtain valid solutions.

4. Hull shape definition

Up to this point we have obtained a sectional area curve and a
half-breadths curve in the waterplane that give the ship its main
parameters and hydrodynamic coefficients. We need now a third
curve to define the longitudinal profile, without appendages. This
profile can be directly selected by the designer from other ships or
from a preliminary general arrangement if available, and for the
sake of simplicity this has been the selected option in this paper.
A more complex parameterization of the sectional area curve,
waterline, and centerline can be seen in Harries (1998) that also
uses the geometric inertia moment of these curves and other geo-
metrical parameters.

This profile has to be smooth, without inflections and with the
same waterline length used in the parameterization of the sectional
and half-breadths curves. In a later section we will see if the
selected curve produces a smooth hull shape and, if not, a proce-
dure to fix the problem as much as possible.

With this set of three curves forming the basis of our hull shape
definition, we need to find a suitable formulation to describe the
shape of the frames. This formulation must comply with an area
imposed by the sectional area curve, with a beam imposed by the
half-breadths curve and with the frame feet imposed by the above-
mentioned profile curve.

For any frame n, the following mathematical expression has
been selected (Jorde 1997):

z = �T − Tn� + kn � y + pn � yqn (5)

In this equation (Fig. 3), z is the ordinate measured from the
baseline, y is the distance to the center plane, kn is the tangent in
midship (deadrise angle), T is the draft of the ship, and Tn is the
draft of frame n, meaning the distance from the waterplane to the
lowest point of the frame of abscissa n, obtained from the profile
curve imposed.

The reason for this definition for the shape of the frames lies in
the composition of the straight zone, kn · y, that defines the shape
from the centerplane, and a curved zone, pn · yqn, that leaves the
straight zone to match the corresponding beam in the waterplane.
This simple expression, however, would not be adequate to define
the sections of a bulbous bow or midship sections of full hull
forms, such as tankers, that demand the use of spline curves or that
have to be divided in different curves.

The values for constants pn and qn will be obtained for any
frame n, with z = T and y = Bn/2, where Bn is the value of
waterline breadth, obtained from the curve of the waterline half-
breadths previously generated.

In addition, the area enclosed by the frame with the flotation
and the centerplane (z axis in transverse view) must be equal to
Sn/2, where Sn is the area of frame n, obtained in this case from the
sectional area curve calculated previously. These conditions lead
to the following definition of the constants:

qn = �Tn − kn �
Bn

2 � �
Bn

2
� �Tn �

Bn

2
−

Sn

2
−

kn

2
� �Bn

2 �2�−1

− 1 (6)

pn = �Tn − kn �
Bn

2 ���Bn

2 �qn

The sectional area and half-breadths curves are nondimensional,
and their values should be multiplied by Ax and Bx, respectively,
to obtain the actual values of An and Bn for any given frame n.

5. Above-water hull shape

Up to now, only the underwater hull shape has been defined.
This is enough to perform numerical optimizations by varying the
hull main coefficients, obtaining hull shapes in a relatively
straightforward way that is easy to implement in a computer pro-
gram. For a more realistic approach to the design, it is necessary
to fit the complete hull shape with its above-water part. Starting
with a hull defined as we have shown in the preceding sections,
the designer is faced with several options. All of them require the

Fig. 3 Definition of underwater hull frames
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definition of a deck line or sheer (Bcn), usually a three-
dimensional curve.

The transverse curves making up the above-water shape lying
between the waterline and the deckline can be defined in several
ways. The only requirements that have to be imposed are the
tangency in the waterplane with the frames of the underwater hull,
the location of the ends on the deck line, and that they have to be
smooth. It is recommended that the chosen definition allow
changes in the frame end angle at the deckline in order to better
accommodate changes in the general arrangement.

It is recommended that the designer make use of expressions of
the form shown in (7), to make the frames pass through the se-
lected waterline, be tangent to the corresponding underwater
frame, and have an end angle on the deckline. According to
Fig. 4:

z = T + Tg��nf� � �y − Bn�2� + p�n � �y − Bn�2�q�n (7)

In this case, the value of �nf is already known from the underwater
hull, this being:

Tg��nf� = kn + pn � qn�Bn�2��qn−1� (8)

The values of the constants p�n and q�n corresponding to the
above-water hull are computed from the conditions already ex-
plained. To simplify the notation, we will use x1 = Bn/2, y1 = T,
x2 = Bcn/2, y2 = Tcn.

q�n =
�x2 − x1� � �Tg��nc� − Tg��nf��

y2 − y1 − Tg��nf� � �x2 − x1�

p�n =
y2 − Tg��nf� � �x2 − x1� − y1

�x2 − x1�q�n
(9)

The above-water hull is extended along the overall length
(LOA), that is, over the underwater fore body and aft body. In the
frames of these two zones, as there is no underwater hull frame to
support the corresponding above-water frame, the value of (8) is
unknown and should be estimated, as with �nc, in such a form that
the q�n and p�n remain smooth along the length, as we will see in
section 6. If the vessel has an inclined transom, this has to be taken
into account when defining the deck line.

6. Basic fairing

The mathematical formulation of the frames guarantees their
smoothness, but not that of the hull shape as a whole body. Even
if smooth curves are used for all defining curves, the hull can show
longitudinal irregularities or bumps if all the parameters are not
related in a consistent way.

These irregularities can be detected using some magnitudes
from the parameterization, or derived from it, that allow the de-
signer to evaluate the “fairness” of the design with respect to some
satisfactory criteria. One of these magnitudes is the following
coefficient of the sectional area:

Cn =
Sn

Bn � Tn − kn � �Bn�2�2 (10)

If we graph this curve, we can see how the shape of the frames
changes along the length of the ship. A good design should not
show inflections. The greater the value of Cn, but always inside the
range [0,1], the fuller the shape of the frames (U form). On the
other hand, the lesser the value of Cn, the more the frames take
V-like shapes, as in the fore body of a fast ship.

At (10) the designer imposes Tn from the centerplane profile
curve selected and kn from the deadrise distribution chosen, and
can achieve a smooth distribution of Cn along the length by vary-
ing these two parameters in the problematic zones of the curve,
taking into account that the effect of modifying Tn is greater than
the one obtained varying kn. The deadrise can be made constant for
all frames or not, as desired.

Other good measures of fairness can be obtained from the varia-
tion along the length of the parameters pn and qn from (6) as their
evolution from one frame to another must be smooth to get a fair
hull shape. The effect of these coefficients will be easily under-
stood with the example at the end.

To summarize, in order to delete the possible inflections from
any of the three curves above, the designer has to act on Tn and kn,
checking in parallel the centerplane profile curve and, possibly,
slightly modifying Sn and Bn, but not forgetting that these changes
will alter the initial values of the main coefficients desired for the
ship.

Thus, if the changes made on Sn and Bn to smooth out Cn, pn,
and qn are significant, this means that the initial main coefficients
we started with are not consistent, and it is not possible to get a
correct hull shape with them. This is an important issue to have in
mind when performing a hull shape optimization by altering the
main coefficients. Furthermore, the hull fairing will be improved
in section 8 with the use of NURBS surface properties.

Using expressions such as (7) for the above-water part, the
designer has the advantage of being able to use the q�n and p�n

curves along the length to check the fairness of the above-water
hull. Once again, these curves should be smooth, and for that
purpose the designer has to act on the parameter �nc or on the
shape of the selected deck line.

7. Modeling the hull with a NURBS surface

Up to this section, a wire model of the ship stations that has the
desired form coefficients can be created, but it is possible to define
a surface that can rest on the created stations. In the case of these
simple hull forms, one surface can model the whole hull. With the
use of NURBS surfaces, it is also possible to use a fairing algo-Fig. 4 Definition of above-water hull frames
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rithm that will improve the previous fairing of the wire model that
was checked with the plot of the pn, qn, and Cs coefficients. The
use of NURBS surfaces enables the creation of the hull mesh, the
previous step to CFD calculations, and the naval architecture cal-
culations with computer programs.

In order to define the surface, the offsets obtained with the
explicit expressions (5) and (7) will be approximated with spline
curves. After this, a lofting surface of these splines can be easily
constructed. And finally, once the surface is constructed, the fair-
ing algorithm described in section 8 can be applied.

7.1. Some comments about NURBS

The surfaces that best model the hull of a ship are NURBS
surfaces. In order to introduce the notation for the paper, we
review briefly how they are produced (see, e.g., Farin 2001, Piegl
& Tiller 1997).

A B-spline curve is formed by several pieces of polynomial or
rational curves and the whole curve is C2 (common curvature or
second derivatives) at the junctions, in the case of cubic B splines.
It is defined by a polygon called a control polygon and by an
interpolation algorithm that allows the construction of the curve
relating the curve to the control polygon. The interpolation steps
are encoded in a family of piecewise polynomial functions Nn

j (u)
called B-spline functions of degree n. The order of the functions is
n + 1 and stands for the number of nonnull pieces that the B-spline
functions may have. Three is the most usual degree in ship design
and the one that better fits the traditional loftsman’s splines.

A spline curve is a linear combination of B-spline functions
with m + 1 control points as coefficients. So, spline curves are
parametric, x = g(u), y = h(u). In the plane Vi = (Xi, Yi), i =
0, . . . , m, generate a spline s(u) of degree n:

s�u� = �
j=0

m

Vj � Nj
n �u� = �X�u�,Y�u�� = �

j=0

m

�Xj � Nj
n�u�, Yj � Nj

n�u��

(11)
Rational curves may also be defined,

s�u� =
�
j=0

m

wj � Vj � Nj
n�u�

�
j=0

m

wj � Nj
n�u�

(12)

by introducing a set of numbers, wj , j = 0, . . . , m, called weights.
If all of them are one, the polynomial B spline is recovered, since
a property of B-spline functions is that their sum is always unity,
for all values of the parameter u.

�
j=0

m

Nj
n�u� = 1

The parameter u grows monotonically from one endpoint of the
curve to the other. It is usual to take values between zero and one,
but this is not necessary. It bears no simple relation to the length
of the curve. The price that has to be paid for using parametric
coordinates is that the inverse relation, which is the relation that
provides u in terms of x or y, is not simple and therefore it is
difficult to know the value of u for a given point of the ship
offsets.

In addition to the control polygon, a spline curve has also a list
of knots, which are the values of the parameter u at the junctions

between pieces. We shall use the word knot to refer either to the
junction point or to the value of the parameter at the junction.

The B-spline curve is forced to pass through the first and last
vertex of the control polygon, corresponding to knots u � 0 and
u � 1. The first and last sides of the control polygon provide the
direction of the tangents to the curve at the endpoints. This is
achieved by repeating the knots at u � 0 and u � 1 on the spline.

7.2. Calculation of the B-spline functions

A spline curve of degree n is a linear combination of B-spline
functions of the same degree. These functions may be constructed
recursively from lower to higher degree in terms of the list of
knots, starting at u−1. These basis functions can be calculated with
the De Boor algorithm of equation (13):

Nj
0�u� = �1 u ∈ �uj−1, uj�

0 u ∉ �uj−1, uj�

Nj
n�u� =

u − uj−1

uj+n−1 − uj−1
� Nj

n−1 �u� +
uj+n − u

uj+n − uj
� Nj+1

n−1�u� (13)

7.3. Mean square approximation of stations with a
cubic spline

As previously mentioned, each station will be given by a list of
data points of the ship hull or offsets, formed by p + 1 points
Pi = (xi, yi), i � 0, ... , p, (p � n), necessarily enclosing the first
and last points of the curve, through which the spline will pass. We
wish to find a list of m + 1 control points Vi � (Xi, Yi), i � 0, . . . ,
m, (n � m � p), which defines the n-degree spline of parametric
equation s(u), which is closer to the data points, according to
equation (11), considering the least square fitting criteria.

We choose cubic splines (n � 3) and not another degree for
simplicity of their formulation and for their properties (i.e., pos-
sibility of an inflection point in each piece, class C2). We have also
mentioned their similarity with the curves drawn with the tradi-
tional design techniques.

7.4. Choosing the list of knots

The spline must pass through the first and last point of the data
set. Therefore, the first and last control points must be the end-
points of the original curve and multiplicity three (four, counting
the additional knots) will be assigned to the parameter values
corresponding to these points. We may choose the remaining
knots arbitrarily. They are usually taken equally spaced between 0
and 1 or spaced with constant difference equal to unity:

u−1 = u0 = u1 = u2 = 3, u3 = 4, . . . , um = um+1 = um+2 = um+3 = m + 1

Once the approximating spline has been defined, we have to
choose a function that measures the distance between the spline
and the original data. The Euclidean distance between actual and
approximating points may be used to define

R = �
i=0

p

�s(Ui) − Pi� = �
i=0

p

��X�Ui� − xi�
2 + �Y�Ui� − yi�

2� (14)

where Ui, i = 0, . . . , p, is the value of the parameter u associated
with the point Pi of the data set. This point is related to a point in
the spline, s(Ui), and therefore R measures the distance between
the spline and the original station.
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7.5. Choosing a parameterization

The value of function R will decrease as the spline points ap-
proximate to the original data set. For this premise, the choice of
parameters Ui, i � 0, . . . , p, is determinant. This is called the
choice of parameterization. There are many ways of choosing the
parameterization. The most usual methods are the uniform param-
eterization, the parameterization by chord length, and the centrip-
etal parameterization (Farin 2001, Lee 1989).

In a first approximation we will use the centripetal parameter-
ization to obtain the values Ui, i � 0, . . . p, since it usually
provides a more precise fitting for a list of points,

Ui − Ui−1 = k � 	�Pi − Pi−1�, i = 1, . . . , p (15)

where the initial value U0 and k depend on the origin and width of
the interval of definition of the parameter u, in this case, respec-
tively, 3 and m + 1:

U0 = 3, k =
m − 2

	�P1 − P0� + . . . . . + 	�Pp − Pp�1�

7.6. Solving the approximation problem

In order to obtain the cubic spline with m + 1 control points,
which is closer to the data, we minimize the distance function R,
using as free parameters the coordinates of the control points,
except for the first and last points, which are already determined.
We are left with m − 1 equations for each variable, X, Y:

�
j=0

m ��
i=0

p

Nk
3�Ui� � Nj

3�Ui�� � Xj = �
i=0

p

xi � Nk
3�Ui�

�
j=0

m ��
i=0

p

Nk
3�Ui� � Nj

3�Ui�� � Yj = �
i=0

p

yi � Nk
3�Ui� (16)

We shall call B the matrix formed by bij � N3 j (Ui), i �
0, . . . , p, j � 0, . . . , m:

B = �
N0

3�U0� · · · Nm
3 �U0�

·
·
·

· · ·
·
·
·

N0
3�Up� · · · Nm

3 �Up�
�

The system of equations (16) may be written in matrix form as

BtBX = Btx (17)
where Bt denotes the transposed matrix of B, bt ij = bji, and X and
x are, respectively, the matrices of coordinates of both the control
points and the data points:

X = �
X0 Y0

·
·
·

·
·
·

Xm Ym

� , x = �
x0 y0

·
·
·

·
·
·

xp yp

�
Since the first and last control points are known, because they

are equal to the first and last data points, respectively, the first and
last columns of this system of equations are moved to the right-
hand side. If we write the columns of the matrix B as

Bi = N3 i�U0�, . . . , N3 i�Up�

the matrix of the system of equations is provided by their scalar
product, C = (cij ), cij = Bi · Bj , i, j � 1, . . . , m − 1:

C = �
B1 � B1 · · · B1 � Bm−1

·
·
·

· · ·
·
·
·

Bm−1 � B1 · · · Bm−1 � Bm−1

�
This matrix is obviously squared and symmetric and therefore the
system

C � �
X1

·
·
·

Xm−1
� =� �

i=0

p

xi � N1
3�Ui� − B1 � B0 � X0 − B1 � Bm � Xm

·
·
·

�
i=0

p

xi � Nm−1
3 �Ui� − Bm−1 � B0 � X0 − Bm−1 � Bm � Xm

�
C � �

Y1

·
·
·

Ym−1
� =� �

i=0

p

yi � N1
3�Ui� − B1 � B0 � Y0 − B1 � Bm � Ym

·
·
·

�
i=0

p

yi � Nm−1
3 �Ui� − Bm−1 � B0 � Y0 − Bm−1 � Bm �Ym

�
has a unique solution. In this case, the Gauss method is used to
solve the system of equations of (17). For most ship hull forms,
stations are modeled with no more than 15 control points, which
can be managed fairly well with the Gauss method.

7.7. Searching for the optimal parameterization

Although the centripetal parameterization usually provides
good results, it is desirable to obtain the best spline fitting for the
data points of the ship hull with a minimum number of control
points. This way the surface fairing process is improved. We shall
try to optimize the parameterization by an iterative scheme, using
as initial seeds the values Ui, i � 0, . . . , p, obtained with the
centripetal parameterization.

This is one of the key points of the process, since the quality of
the approximation of the station points obviously determines the
quality of the hull approximating surface.

Once the approximating spline s(u) is obtained with the values
of Ui provided by equation (15), we calculate the line perpendicu-
lar to the spline curve from each data point Pi. Such a line cuts the
spline at a point Ii so that distance PiIi is the minimum distance
between the data point and the spline. Then we take the value U1

i of the parameter u corresponding to Ii, Ii � s(U1 i ), obtaining
a new family of parameters, U1

0, . . . ,U1 p.
We calculate now the parameterization for the approximating

spline s1(u) with the new parameters, which provides a better
precision fitting for the list of points Pi. Iterating this process j
times, we get a family Uj i of parameters for which the precision
of the associated approximating spline sj(u) is increased several
times compared to the original centripetal parameterization.

In order to calculate the error made in the approximation, we
divide the spline in a large number of points and the distance PiIi
is calculated numerically. Figure 5 shows the effect of the param-
eterization in the fitting of the points of the underwater part of a
convex station generated according to section 0 and approximated
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with a spline of four control points, 1.2 m draft, and 2.3 m half
breadth. Because of the shape of the stations developed in the
presented method, the maximum error values are small. With just
five iterations (Fig. 5, top right), the error value is below 1 cm and
with 50 iterations (Fig. 5, bottom right), the error value is just a
few millimeters.

The effect of the parameterization is increased in the case of
stations with changes of curvature. Figure 6 shows the effect of the
choice of parameterization in the fitting of the points of a bulbous
bow, 6.35 m draft, and 1.7 m half breadth, with a cubic spline of
six control points. In Fig. 6 (left) the parameterization is centrip-
etal, the first step of approximation. With five iterations (Fig. 6,
middle left), the improvement is hardly perceptible, but the graphs
of 20 (Fig. 6, middle right) and 50 iterations (Fig. 6, right) show
that the error diminishes with an increase in the number of itera-
tions. This kind of station cannot be defined with the presented
method, but it does show better the effect of the parameterization
used in this work.

If a certain tolerance is imposed on the approximation, itera-
tions are carried out until the maximal distance PiIi becomes less
than the tolerance value. If the tolerance cannot be attained no
matter the number of iterations, the number of control points is to
be increased.

Once this process is carried out on the list of points for every
station (among them it is also possible to include the stem and
stern profiles), we have every station approximated with a cubic
spline and also a measure of the approximation error made in each
of them. Increasing the number of control points may diminish this
error. The tolerance can be taken to be zero by prescribing a
number of control points equal to the number of data points,

although in this case we are not approximating but interpolating a
spline through the data.

Interpolation is just a special case of approximation, but the
presented method and the presented examples use approximation
instead of interpolation, because this way simpler curves and sur-
faces can be obtained, facilitating the fairing process. This ap-
proximation gives good enough results for the tolerances normally
used in ship design.

For the ship hull forms that authors have tested, the parameter-
ization method used in this work does not show convergence
problems. The most complex parts of a ship can be bulbous bow
forms, as the one in Fig. 6, and these sections are correctly solved
with the parameterization process described in this work. Al-
though this kind of section with inflections cannot be generated
directly with the presented method and equations (5) and (7), the
effect of the parameterization in this kind of section is clearer than
in the kind of section with no inflections generated with the
method.

7.8. Generation of a spline surface through the stations

The generalization from cubic spline curves to bicubic spline
surfaces is almost straightforward. The control polygon is substi-
tuted for a control net depending on two indices, Vij (Xij, Yij, Zij),
as in Fig. 7, that corresponds to the example presented in section
0. Products of B-spline functions in two variables u and v and two
lists of knots {u−1, . . . , um+3}, {v−1, . . . , vn+3} are used:

s�u, v� = �
i=0

m

�
j=0

n

Vij � Ni
3�u� � Nj

3�v�

u ∈ �u2, um�, v ∈ �v2, vn�

(18)

Fig. 5 Effect of the parameterization on a convex station. (Top left) Zero iterations, error = 1.11 cm. (Top right) Five iterations, error = 0.96 cm.
(Bottom left) Twenty iterations, error = 0.57 cm. (Bottom right) Fifty iterations, error = 0.19 cm

8 MARCH 2008 JOURNAL OF SHIP RESEARCH



For constant u, we obtain cubic spline curves in v with n control
points. For constant v, we obtain cubic spline curves in u with m
control points. Therefore, we may construct the surface from a
two-dimensional net of spline curves. This is especially useful for
our purposes, since it allows us to draw a surface from previously
designed stations of the vessel.

In practice, this is easy, since it requires just another minimum
squares fitting, this time with n + 1 control points for each of the
m + 1 longitudinal rows of control points corresponding to the
approximating splines for the stations.

These new control polygons constitute the control net of the
approximating surface for the initial list of data points. In this case
the m + 1 list of points will include the stem and stern profiles.

8. Surface fairing process

Once the surface is fitted with an adequate number of control
points, it is usually faired interactively by direct manipulation of
the calculated control net, taking into account curvature diagrams
of the surface.

The main problem is that generally this fairing process may
damage the level of precision acquired during the construction of
the approximating surface, since the fairing and fitting process
may interfere with each other. To avoid this, we use an automatic
fairing method that requires a minimum participation of the user.

It is desirable that the fairing process should be local. If the
surface needs to be faired only at a local spot due to the presence
of an isolated bump, this should not mean that the whole surface
has to be modified, and the hydrodynamic characteristics of the
vessel will be maintained.

8.1. Fairing criterion

Among both lists of knots necessary to define the surface, we
shall refer to the inner knots as u3, . . . , um−1 and v3, . . . , vn−1, and
we assume that they all have a multiplicity of one. The whole set
of indices for inner knots (uk, vl) is then I � [(3, 3); (3, 4); .....;
(m− 1, n − 1)].

If this criterion had to be fulfilled at every knot, it would mean
that the spline surface would not be spline but polynomial; that is,
it would be a spline of just one piece. Since bicubic spline surfaces
are generically C2, their third-order derivatives are discontinuous
at the knots. That is, we have just excluded the knots correspond-
ing to the edges of the surface.

Fig. 6 Effect of the parameterization on a bulbous bow station. (Left) Zero iterations, error = 6.64 cm. (Middle left) Five iterations, error = 5.24 cm.
(Middle right) Twenty iterations, error = 1.84 cm. (Right) Fifty iterations, error = 1.21 cm

Fig. 7 Control point net
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There are a certain number of fairing algorithms in the litera-
ture, but mostly for spline curves and not for surfaces. Methods for
spline curves are usually grounded on knot removal procedures
(Farin et al. 1987, Kjelander 1983). However, the translation from
curves to surfaces is far from straightforward.

We have chosen Hahmann (1998) for its simplicity and its local
character, since it involves just nine control points in each itera-
tion, compared with other alternative fairing algorithms (Brunet
1985, Hahmann & Konz 1998, Kjelander et al. 1983). We have
modified Hahmann (1998) to maintain certain ship characteristics,
as we will explain in the final comments on the fairing process.

Faired surfaces can be generated by means of minimization of
certain fairness measures, which can be regarded as approximate
strain energy (Nowacki & Reese 1983). A discussion about the
selection of proper fairness measures can be found in Moreton and
Séquin (1991) and Welch and Witkin (1992). In order to develop
a fairing method, we need a sort of quantitative measure of the
fairness of the surface.

8.1.1. Local fairness criterion. A C2 spline surface s(u, v) is
fairer in the neighborhood of the inner knot (uk, vl) if s(u, v) is
locally C3 at (uk, vl).

Following this criterion, each local fairing iteration consists of
reducing the differences between third-order partial derivatives at
(uk, vl). This means that fairing the whole surface amounts to
reducing the value of the sum of third-order discontinuities at all
inner knots on the surface.

A spline surface is C3 at (u, v) if and only if every third-order
partial derivative of s(u, v) is continuous at (u, v). Since spline
surfaces already have the property of having continuous third-
order cross partial derivatives, the sum of the differences along
both u and v directions provides a reasonable measure of local
fairness, according to the fairness criterion.

We may define discontinuity vectors at each knot:

�uuu�uk, v1� =
�3s

�u3 �uk
−, v1� −

�3s

�u3 �uk
+, v1� = �

i=k−4

k

�
j=1−3

l−1

�ij � Vij

�vvv�uk, v1� =
�3s

�v3 �uk, v1
−� −

�3s

�v3 �uk, v1
+� = �

i=k−3

k−1

�
j=1−4

1

�ij � Vij (19)

where generically the coefficients �ij , �ij (Table 1 and Table 2)
depend on the knot (uk, vl). But in the case of equally spaced inner
knots, they take the same value for every knot.

Therefore, a local fairness measure Lkl at the knot (uk, ul) could
be defined as

Lk1 =��uuu�uk, v1��2 +��vvv�uk, v1��2 (20)

In the calculation of Lkl, 21 different control points take part.
As a whole, we may assign the whole surface s(u, v) a quantity

Gs that may be called a global fairness measure:

Gs = �
�k,1�∈I

Lkl (21)

8.1.2. Global fairness criterion. A bicubic spline surface s(u, v)
is fairer than another s�(u, v) if Gs < Gs�.

The strategy that we follow in order to improve the fairness of
the surface involves two steps:

• A local fairing iteration at the knot (uk, vl), (k, l) ∈ I, where
Lkl = max (Lij), that is, at the least fair knot, according to the
local fairness criterion.

• Recalculation of Gs and back to the previous step.

8.2. Local fairing iteration

The smoothness of the surface at the knot (uk, ul) changes from
C2 to C3, Lkl � 0; that is, the third-order derivative discontinuity
disappears and the surface is then as smooth as possible at this
knot. The local smoothness measure is zero, and therefore,

�uuu�uk, v1� = 0; �vvv�uk, v1� = 0 (22)
This system of equations is compatible but undetermined, since

there are more unknowns than equations. We obviously intend to
modify the surface minimally; that is, the distance max |s(u, v) −
s� (u, v)| should be minimal. But this condition is highly nonlinear.

In order to linearize the problem, while minimally influencing
the surface, we modify the position of just 9 points, instead of 21,
keeping the others fixed. That is, we improve the local fairness
measure of each knot (uk, vl) modifying the position of the control
points Vij , i = k − 3, k − 2, k − 1, j = l − 3, l − 2, l − 1 that have
the greatest effect in the neighborhood of the knot.

In this way, the new position of these nine points will be given
by the solution of the system of equations (22) that at the same
time causes the smallest deformation of the original surface, that
is, the minimum of the vector function F(V� ij):

F�V�ij� = ��
i=k−3

k−1

�
j=l−3

l−1

|vx
ij − v�x

ij|2, �
i=k−3

k−1

�
j=l−3

l−1

|vy
ij − v�y

ij|2,

�
i=k−3

k−1

�
j=l−3

l−1

|vz
ij − v�z

ij|2� (23)

where Vij is an original control point and V�ij is a modified one.
This condition replaces the minimal deformation condition, and

it has the advantage of producing linear Lagrange equations.
In order to solve this problem, we make use of Lagrange multipliers:

	�V�ij, 
, �� = F�V�ij� + 
 � |�uuu�uk, v1�| + � � |�vvv�uk, v1�| (24)
by imposing that the new function 	(V�ij ) should meet a minimum.

This furnishes the following system of 11 vector equations:

�	

�V�ij
= 0 �9 equations�

�	

�

= 0 �1 equation� (25)

�	

��
= 0 �1 equation�

Table 1 �ij coefficients, i = k − 4, . . . , k, j = l − 3, . . . , l − 1

�ij k − 4 k − 3 k − 2 k − 1 k

l − 3 −1/6 2/3 −1 2/3 −1/6
l − 2 −2/3 8/3 −4 8/3 −2/3
l − 1 −1/6 2/3 −1 2/3 −1/6

Table 2 �ij coefficients, i = k − 3, . . . , k − 1, j = l − 4, . . . , l

�ij l − 4 l − 3 l − 2 l − 1 l

k − 3 −1/6 2/3 −1 2/3 −1/6
k − 2 −2/3 8/3 −4 8/3 −2/3
k − 1 −1/6 2/3 −1 2/3 −1/6
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In the case of equally spaced knots, the coefficient matrix of the
previous system of equations does not depend on the knot. If the
differences uk − uk−1 and vl − vl−1 are unity,

A = �
2 0 0 0 0 0 0 0 0 4 4

0 2 0 0 0 0 0 0 0 −6 16

0 0 2 0 0 0 0 0 0 4 4

0 0 0 2 0 0 0 0 0 16 −6

0 0 0 0 2 0 0 0 0 −24 −24

0 0 0 0 0 2 0 0 0 16 −6

0 0 0 0 0 0 2 0 0 4 4

0 0 0 0 0 0 0 2 0 −6 16

0 0 0 0 0 0 0 0 2 4 4

4 −6 4 16 −24 16 4 −6 4 0 0

4 16 4 −6 −24 −6 4 16 4 0 0

�; A � �
v�k−3,l−1

v�k−2,l−1

v�k−1,l−1

v�k−3,l−2

v�k−2,l−2

v�k−1,l−2

v�k−3,l−3

v�k−2,l−3

v�k−1,l−3




�

�
= �

2 � vk−3,l−1

2 � vk−2,l−1

2 � vk−1,l−1

2 � vk−3,l−2

2 � vk−2,l−2

2 � vk−1,l−2

2 � vk−3,l−3

2 � vk−2,l−3

2 � vk−1,l−3

c1

c2

�
c1 = �vk−4,l−3 + 4 � vk−4,l−2 + vk−4,l−1 + vk,l−3 + 4 � vk,l−2 + vk,l−1�

c2 = �vk−3,l−4 + 4 � vk−2,l−4 + vk−1,l−4 + vk−3,l + 4 � vk−2,l + vk−1,l�

Once the inverse of the coefficient matrix A is known, the itera-
tions of the fairing process are easy to compute, since they are just
a multiplication of the matrix by the independent term vector. V�ij

stand for the new position of the control points Vij after a fairing
iteration.

8.3. Final comments on the fairing process

This fairing process will not generally be necessary when the
surface has been modeled with a low number of control points, but
also with low precision to fit the hull data, since the approximation
procedure has already erased small irregularities that may have
arisen in the ship offsets. Figure 8 presents two sailing ship hulls
generated with the method; the number of control points may be
seen, 7 × 6, and also the longitudinal distribution of curvature
along isoparametric curves, a usual technique for checking the hull
fairness.

The problem arises when very high precision is required and a
large number of control points are therefore used, even as many as
data points. In this case approximation becomes interpolation. In
such cases the surface reproduces precisely the ship offsets, but
the feared bumps may appear. We may easily detect them plotting
the Gaussian curvature of the surface or the curvature of isopara-
metric curves in any computer-aided design (CAD) application by
importing to an IGES file the data that have been obtained in the
previous step.

In Fig. 9, a control net of 7 × 10 points has been used for fitting
ship offsets following the method described in this work. A greater
number of control points has been used to obtain a better fitting in
the bow region. The control net as well as the longitudinal cur-
vature of the isoparametric curves of the surface may be seen.

In these cases we use the fairing algorithm that we have previ-
ously described, which is local; that is, it modifies just the surface
needed to be smoothed, altering the information of a few control
points and leaving the rest unaltered.

However, if we do not want to alter the shape of the ship hull
surface at the deck or at the centerline, or the tangent directions on
such edges, we must not allow the fairing algorithm to modify the
position of every control point. These angles affect ship seakeep-
ing.

In order to avoid this, we fix the position of the last and of the

Fig. 8 Control point net with few control points

Fig. 9 Unfaired net
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first two longitudinal rows of control points. We thereby prevent
the algorithm from changing them; therefore, the centerline and
the bow and stern profiles, as well as the deadrise angle or starting
angle of the stations at the centerline, remain unaltered.

In this way we avoid deforming too greatly the original hull
surface. In order to achieve this, we restrict just the application of
the fairing algorithm to a set I0 of inner knots, subset of the
original set I, where the last and the first rows of inner knots have
been excluded. That is, the knots that are included in the algorithm
and therefore may be faired are (uk, vl) such that k, l are in I� �
[(4, 4); (4, 5); .....; (m − 2, n − 2)].

In Fig. 10 the fairing effects may be seen on the hull of Fig. 9.

The curvature of isoparametric curves has improved if we com-
pare them with the ones that have not been faired.

With the use of a zebra plot, the effect of the fairing process is
more visual. In Fig. 11, the hull with seven fairing iterations is
shown (left) and compared with the original one without fairing
(right).

A final consideration is the required number of iterations of the
fairing algorithm. There is no a priori criterion with which to
choose it, since it depends on the considered hull. It is not con-
venient to use a number that is too large so that the original surface
does not change too greatly, but it cannot be so low that the
surface is not sufficiently faired. A quick view of the curvature of
the isoparametric lines and checking the hydrostatic parameters is
a good indicator.

9. Application example: recreational cruiser

This section describes an application example. As mentioned,
the presented method can be applied for hull forms without bul-

Table 3 Sailing cruiser

T � 1.26 m LCB � 9.4 m A0 � 0 m2 Xmw � 0.4

LWL � 20.3 m Xm � 0.45 Ax � 4.4 m2 Bx � 5.1 m
LOA � 24 �s � 66° Awp � 72 m2 �s � 21°

� � 49 m3 �e � 8° LCF � 9.2 m �e � 36°

Fig. 10 After seven fairing iterations

Fig. 11 Effect of the fairing algorithm

Fig. 12 Prismatic coefficient and position of the center of buoyancy
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bous bows or sterns with integrated skegs. Nevertheless, there are
many hull forms for which this method can be used for design
purposes.

A sailing cruiser of 24 m length is designed. This is the maxi-
mum length according to the EC regulation that can be considered
for a recreational ship. For this ship, comfort aspects are more
important than sailing capabilities because, during an important
part of the operational profile, the ship is driven by motor. The
ship parameters are shown in Table 3.

The ship is designed to minimize the advance resistance at a
speed of 9.5 knots. Resistance is evaluated according the Delft
Systematic Series (Gerritsma et al. 1993). Some values, such as
CP and LCB, are obtained from Gerritsma et al. (1993) and are
shown in Fig. 12.

Displacement was obtained studying the influence of Lwl /�
1/3 inFig. 13 Residuary resistance as a function of Lwl /�

1/3.

Fig. 14 Mathematical sectional area curve and waterplane

Fig. 15 Centerline and deck

Fig. 16 Recreational cruiser
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the residuary resistance, according to Larsson and Eliasson (1994)
(Fig. 13). The value of this ratio was taken to be 5.5. Greater
values will produce a faster ship but will reduce the comfort and
seakeeping properties.

The generated waterline should consider the internal volume
distribution, based on an initial volume study of the internal ar-
rangement of the design. The same consideration can be made for
the deck parameters. Maximum breadth is calculated considering
sail area and stability parameters. This way, Awp, Bx, and LCF are
obtained.

The sectional area curve and waterplane area obtained with
these parameters and equations (1) to (4) can be seen in Fig. 14.
Centerline and deck profiles have been obtained to enclose the
internal volumes of the general arrangement and can be seen in
Fig. 15. The stations calculated are depicted in Fig. 16 (left). The
variation of the coefficients Cn, pn, and qn is plotted in
Fig. 17.

The creation of the sailing cruiser’s NURBS surface is shown in
Figs. 9 and 10. The final result is depicted in Fig. 16 (right). As
mentioned, the NURBS modeling and the fairing algorithm will
change the shape of the surface, and the effect on some hydrostatic
parameters can be seen in Table 4. Precision can be improved by
increasing the number of control points of the surface net, but this
will diminish the effect of the fairing algorithm. As in other as-
pects of ship design, the best solution is a compromise between
precision and fairing based on the designer’s experience.

A small model of this hull was constructed using the approxi-
mating surface from offsets shown in Fig. 16 (left), modeled with
the presented method in section 7, and faired with the method
described in section 8. The final result is shown in Fig. 18.

10. Conclusions

The method described in this article is able to impose on a hull
shape a series of main coefficients commonly used by the naval
architect and of great interest for the design. This method allows
taking control of the fairing of the hull shape from a certain set of
parameters built into its definition. This basic fairing improves the
results of the NURBS fairing algorithm.

The hull shape thus generated can be exported to naval archi-
tecture programs or can be used for CFD evaluation and be the
initial case of an optimization process. To ease this process, an
automatic lofting with NURBS surfaces of the generated wire
model has been presented.

The lofting method relies on an accurate fitting of data points of
the stations with an original selection of the parameterization,
increasing as much as possible the precision of the approximating
cubic spline curves. The origin of the method is the traditional
design with physical splines.

To this aim, an iterative algorithm has been devised for obtain-
ing the values of the optimized parameterization for the spline
curves that approximate the hull data points. Other parts of the
process, the approximation scheme, or the fairing algorithm are
standard, although the fairing has been adapted in order to main-
tain certain ship characteristics.

The proposed method provides accurate results for hull forms
generated with it, although the small changes of the hull shape
because of fairing will slightly affect the hydrodynamic param-
eters, and the best solution should be a compromise between pre-
cision and fairing based on the designer’s experience.

The NURBS fairing method, however, may be completed. For

Table 4 Hydrostatic parameters

Wire Model NURBS 0 Fairing NURBS 7 Fairing

� (m3) 49 48.9 48.4
LCB (m) 9.4 9.5 9.6
Awp (m2) 72 72 71
LCF (m) 9.2 9.1 9.1

Fig. 17 Variation of Q, P, and Cs along ship length (underwater part) for the cruiser

Fig. 18 Constructed model of the recreational cruiser
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instance, other fairing algorithms may be tried, such as directional
methods (Feng 1997), for elongated hull shapes. This could be
another line of research for further progress.
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