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ABSTRACT

Equations are derived to assess the strength of plates subjected to biaxial
compressive loads, including the effect of initial distortions and residual
stresses. These equations are then extended 1o the case of simultaneous
lateral pressure loads.

In calibrating the proposed methods and in assessing their model
uncertainty published results of experiments and of numerical calculations
have been used.

The proposed methods were shown to be unbiased as regards plate
slenderness and aspect ratio. The model uncertainty of each method was
quantified and thus can be used to derive design formulations with the
desired level of safety.

NOTATION

Plate length

Plate width

Regression coefficient

Regression coefficient

Modelling factor for the effect of lateral pressure
Modelling factor for the effect of residual stresses
Young’s modulus of elasticity

Tangent modulus of elasticity

Buckling coefficient
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Lateral load

Non-dimensional lateral load parameter

Biaxial strength

Effect of lateral pressure

Correction factor for imperfections

Longitudinal strength ratio in biaxial compression
Percentage of longitudinal loading (eqn. 33)
Transverse strength ratio in biaxial compression
Plate thickness

Non-dimensional residual stress (= o,/0,)
Non-dimensional longitudinal stress (= 6,/6,)
Non-dimensional transverse stress (= 7,/0,)
Aspect ratio

Plate slenderness

Non-dimensional amplitude of distortions

Width of the weld induced zone of residual stresses
Reduction of plate strength due to residual stresses
Longitudinal strength

Longitudinal strength of plates with residual stresses
Longitudinal ultimate strength

Transverse strength ¢, strength of the midfield of a
plate loaded transversely (eqn (8))

Ultimate transverse strength

Strength parameter (eqn (9))

Poisson coefficient

Coefficient accounting for nonuniform load distribution
(eqn (13))

Critical stress

Buckling stress

Yield stress

Residual stress

Longitudinal stress

Ultimate longitudinal stress

Transverse stress

Ultimate transverse stress

1 INTRODUCTION

There are many studies available concerning the compressive strength of
plate elements and of stiffened panels. There are also several simplified
design equations that have been proposed along the years. The various
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proposals have been based on different assumptions which implies that
their accuracy will depend on the situation to which they are applied, as
indicated in Ref. 1.

Most of the design equations were concerned with the uniaxial strength,
both in the longitudinal®* or in the transverse direction.>® However some
studies have addressed the strength of biaxially loaded plates’'® which is
the objective of the present study.

There is a significant amount of data that has become available
recently, both from tests and from numerical studies. These results are
particularly useful to understand the effects of weld-induced initial
distortions and residual stresses, of the plate aspect ratio, and of combined
loading. Therefore, it is timely to review the existing results and to reassess
the existing design methods, so as to propose improvements, which is the
purpose of the present paper.

This paper will consider the biaxial compressive strength and after
reviewing the existing formulations and results a new strength assessment
method is derived. The influence of residual stresses and initial
imperfections is assessed and the model uncertainty of the formulation is
quantified.

Plates under biaxial load and lateral pressure are also studied and it is
shown that lateral pressure decreases significantly the strength of the
plates. A new strength assessment method is proposed and its model
uncertainty is assessed.

In designing plate elements it is desirable to introduce a safety coeffi-
cient which ensures that the plate will resist the largest loads expected to
occur during its lifetime. This safety coefficient will therefore depend not
only on the variability of the load but also of the strength assessment.

The components of uncertainty in a strength assessment method are not
only the variability of the basic variables, but also of the model itself.

The simplified models as the ones considered in this paper only account
explicitly for the most significant variables, which means that one should
expect some scatter from their predictions.

The systematic deviations and the scatter of the predictions of a model
can be assessed by introducing a model uncertainty factor.'"'? The
statistical description of this factor can be derived from comparisons of
experimental and numerical results. The mean value will indicate the
systematic deviation, which can be used to correct the formula on an
average sense, and the standard deviation will quantify the uncertainty.

The safety factors that will change a strength assessment method into a
design method will be proportional to that uncertainty and they can be
derived as described in Refs 13 and 14 for the case of plates under uniaxial
compressive loads.
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2 PLATE ELEMENTS UNDER BIAXIAL LOADING
2.1 Existing formulations

Different proposals have been put forward to model the collapse of plates
that result from the interaction between longitudinal and transverse
stresses in a manner that is suitable for design in general and for code
specifications in particular.” The approach that has been generally
adopted consists in predicting the longitudinal and the transverse stresses
in a plate as a function of plate slenderness and of other parameters like
aspect ratio and eventually initial defects. The equivalent stress in the plate
is determined from a combination of the stress components. Thus,
interaction curves have been proposed to combine the non-dimensional
longitudinal stress ratio R, = 6,/0,, with the non-dimensional transverse
stress ratio R, = 0, /0, where the subscript u indicates ultimate strength.

It should be noticed that different formulations of g, and o, have been
advanced by the authors that have proposed the interaction curves. Thus
each of the stress ratios R, and R, indicated hereafter should be referred
to the original author’s formulations of longitudinal and of transverse
strength, ie., R,=T./¢ and R, =T,/¢,, where T,=oa./d, and
T, = 0,/

One expression that has been used in the Det norske Veritas (DnV)
rules, American Bureau of Shipping (ABS) rules and in the British
Standard BS.5400 is the quadratic interaction:

RE4+ R =1 1)
which represents a circle in the R, — R, plane. DnV proposed as normal-

ising strengths the Faulkner’s formula“® in the longitudinal direction and
the one of Valsgard® in the transverse direction, which are respectively:

2 1

¢xu=5—p forp=>1 (2a)
G =1 for p<1 (2b)
and:
O 1Y I
G = " +O~08~<I+F>-<l—&> (3)

where ¢,, 1s given by eqn (2), « is the plate aspect ratio and f its slender-
ness. The rules of the American Bureau of Shipping (ABS) use the same
interaction formula but with different normalising strengths. They prefer
to use a formulation based on the Bryan elastic buckling stress combined
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with the Johnson—Ostenfeld approach to account for the effect of plastic
deformation. The buckling strength g, of a plate is equal to the elastic
buckling strength o,:

2
o, s K
s___ - = <0- 4
% 20—V B for . < 0-5¢q, 4)
when buckling occurs in the elastic range i.e. when o, < 0-50,. The
Poisson’s ratio v is 0-3 for steel plates and the buckling coefficient X
accounts for the type of loading and of boundary conditions. For a wide
plate with linearly varying transverse loading it is given by Ref. 15:

1\ 21
= (14+=) <y < 5
K <1+a2) ST for 0 <y <1 (5)

where the factor is such that when the stresses on one transverse edge of
the plate are ¢ on the other one they are - o. Thus for plates under
uniform compressive stresses ¢ = I. For longitudinal loading with
uniform applied stresses (y = 1) K becomes equal to 4.

When the predicted strength is greater than half the yield stress, the
collapse strength is given by:

or I g,
0'_:1_;0_ for . > 0-50, (6)
o, 4 o,

which implies an elasto-plastic collapse.
However, other authors have proposed parabolic curves, as for example
Faulkner et al.:’

R+ R, =1 (7)

In this case the ultimate transverse strength should be computed by the
expression of the same authors:’

09 19 0-9
¢"”“B7+FE'<1’F) ®)

Valsgard® generalised this expression by including cross terms and making
the exponent of R, a variable y:

R —nR.R, + R> < 1 9)

where 7 > 0 1s a constant. The proposed normalising equations are (2) and
(3), respectively for the longitudinal and transverse directions. On the
basis of his numerical results on a plate with aspect ratio of 3, Valsgard
proposed the following design curve:
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R, —025R.R, + R} <1 (10

which corresponds in fact to y = | and n = 0-25.

Dier and Dowling'® have considered a more comprehensive treatment
which would also be applicable to cases in which one of the load compo-
nents was tensile. This implies that they are considering the interaction
curve not only in the first quadrant of the R, — R, plane (biaxial
compression), but also in the others (biaxial tension). They proposed:

R.+045R.R, + R} =1 (1m

which includes a positive contribution of the cross terms.

In view of all the uncertainty of the results and the different interaction
curves available, Stonor er al.'’ proposed a lower bound curve to the
existing data, which turned out to be:

R+ R =1 (12)

Very stocky plates should behave according to the von Mises equation,
which was generalised in terms of the ultimate directional stress instead of
the yield stress:

RE—RR +R =1 (13)

The choice of adequate normalising equations, ¢,, and ¢,,, should make
eqn (13) an upper bound curve.

Figure 1 shows a comparison between some of the various interaction
curves referred.

2.2 Existing results

Becker and associates'® '® have conducted a series of tests on steel plates
under biaxial compression. The specimens were small square tubes of
0-64 mm thick mild steel to AISI standard 1010 or of 0-76 mm stainless
steel 4130. The specimens were electron beam-welded and in some cases
they have been stress-relieved. The tubes were loaded longitudinally by
applying loads to their ends and transversely by applying four equal
inward loads along the corners of the tube. Thus, each specimen provides
information about four plates.

In the first series of tests the conditions for combined loading were
different from the ones of only transverse loading. The longitudinal load
was applied through stiff plates which restrained the out-of-plane displa-
cements of each plate element. However, in the tests with only transverse
loading, the ends of the tube could slide over the platens and no effective
restrain existed then. The transverse loading frame applied the load to two
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emsumeee ABS

V.Mises
++ Faulkner

— —— = Valsgard

Fig. 1. Comparison between different interaction curves for biaxial compression.

opposed corners of the tube and the adjacent corners would react against
the fixed frame.

In the second series of tests the longitudinal loads were applied
similarly. However, end plates were fitted in the tube to maintain the
shape of the ends when only transverse loading was applied. This second
series of tests was performed largely on high strength stainless steel which
did not have a distinct yield point. The results were non-dimensionalised
with respect to the 0-2% proof stress, which is not clearly the correct
parameter to use.

The tests of Stonor ez al.” " were aimed at studying the overall behaviour
of the plates loaded biaxially, by measuring the longitudinal load-
shortening curve for each plate. Out-of-plane deflection measurements
were made to identify the mode in which the plate failed.

The major attention was concentrated on the maximum load supported
by the plate. Most tests were performed under constant transverse loading
but some were performed under proportional loading to allow assessment
of the effects of different loading paths. The loading consisted of a
dominant longitudinal compression together with a small transverse
compressive loading. Thus, the failure mode was expected to be a limited
modification of the uniaxial loading case.

1.17
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Plates of aspect ratio 4 and 6 were tested. The longitudinal loading
generated higher stresses and was applied to the shorter pair of edges of
length b. The transverse loading was a constant force per unit length
applied over the centre portion of the longer edges, over a length of 2b and
4b. The uniformity of the stresses in the central loaded portion of the plate
was tested by comparing results for plates with aspect ratios of 4 and 6,
maintaining all other parameters equal.

The transverse loading was constant along the loaded portion of the
longitudinal edge. This precludes the operation in the post-buckling
regime where transverse loading is mainly carried in two zones adjacent to
each loaded end, with considerably smaller transverse stresses in the
central part of the plate. This is different from the conditions of
longitudinal edges remaining straight.

The longitudinal load was applied through a stiff wedge-jack, a set of
discrete fingers were used to restrain the out-of-plane displacements of the
longitudinal edges. They were flexible in the x and y directions to avoid
the transfer of the longitudinal loads into their supports and to allow
inward and outward in-plane movement of the longitudinal edges. Only
simply supported tests were conducted.

Longitudinal residual stresses were introduced by beads of weld metal
laid parallel to and close to the longitudinal edges. It was considered that
not enough was known about the distribution of transverse residual
stresses for it to be possible to simulate them in the tests. Initial out-of-
flatness was introduced by using an hydraulic jack carrying a small cap as
load spreader. After the spring back the remaining deflection had the
shape of a sine wave.

The tests were performed on 6 mm steel plates complying with BS 4360,
Grade 50B. All plates failed by the formation of a single large buckle at
the centre, corresponding to the position of the initial dent. In the plates of
b/t = 35 the buckle length is similar to the plate width but for /¢ of 45
and 55 this length grew to 1-35.

Dowling et al.® presented results of numerical predictions of the biaxial
strength of plates with slenderness ranging between 20 and 120, with an
aspect ratio of 3:1 and with varying levels of initial distortions and
residual stresses.

All the results relate to mild steel plates and the geometric
imperfections have a single wave and a three wave component, the ratio
of which is fixed. The average level was considered to have as amplitudes
of the first and third modes 8y = 0-18% and dy; = 0-058°. Slight and
severe distortions were also considered. The results were used to assess
one proposal of interaction equation for the longitudinal and transverse
stresses.
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2.3 Analysis of results

The results used in this study include 233 numerical predictions of
Dowling er al.® the two experimental series of Becker et al'® 1% with 18
and 8 points, the 16 tests of Stonor er al.'” and the 110 tests of Dier and
Dowling,'¢ in a total of 385 data points.

The available results have been plotted in Fig. 2 as a function of the
non-dimensional longitudinal and transversal stresses, normalised by the
yield stress of the material. The slendernesses of the plates are identified
by a number such that

p=iwheni—-05<f<1+05

This figure shows a very large spread of results and the only tendency that
is clear is the fact that with increasing slenderness the results approach the

origin.

A significant improvement is obtained if one uses the theoretical
collapse strength in each direction as the normalising factor instead of the
yield stress. Figure 3 shows the plot of the results when the longitudinal
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Fig. 2. Experimental and numerical results as a function of longitudinal and transverse
stresses normalised by the yield stress. The members at the data points indicate the

slenderness of the plate.
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Ry

Fig. 3. Results with the applied stresses normalised respectively by the longitudinal and
transverse strength predictions, for all slenderness ratios, showing also eqn (1) and the Von
Mises criterion.

stresses are divided by eqn (2) and the transverse stresses by eqn (3),
indicating a clear decrease in the spreading of the resuits.

One aspect that results from that plot and which is worth commenting
on is the series of results obtained for a value of R, close to zero, which lie
well below one. Whenever R, = 0 one has pure transverse loading in
which case the plates have a different mode of collapse and a lower
strength.® These results reflect exactly this change in mode of collapse with
its weakening effect.

Another feature worth comment is the fact that for almost uniaxial
longitudinal loading several plates show a strength 10% larger than the
yield stress. This effect had already been noted in uniaxially loaded plates
in the stocky end, as discussed for example in Ref. 4.

It is common to use as a normalising yield stress the one obtained from
tension tests because this is the material property that most commonly
characterises the material. However, the compression yield stress is
normally 5%-10% larger and if this value was adopted, the results would
lie closer to the curve.

The very stocky plates with < 1-0 fail in general by plastic collapse
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without any buckling weakening effect. In these cases the boundary
restraint of having the edges straight develops bidimensional effects that
may even increase the plate strength. The strength curves are less
applicable in this region and for example the Faulkner uniaxial strength
equation (eqn 2(a)) is valid only for f > 1-0. Separating the points in the
data base which have # < 1.5 from the others identifies the two different
types of behaviour as shown in Fig. 4. Figure 5 resumes the results
obtained for each interaction curve and should provide the basis to further
development.

Figure 4 shows the interaction curve proposed in British Standard
BS5400 (eqn (1)) as well as Von Mises yield criterion defined in respect to
the ultimate stresses instead of the yield stress as usual. It can be observed
that for stocky plates (8 =~ 1) the Von Mises curve is closer to the results
than the interaction curve even though in this case many of the results are
still outside the curve. Figure 4 shows that this curve could be used to
predict those results.

The agreement with the Von Mises curve is not surprising because
stocky plates will fail basically in a plastic collapse governed by the
equivalent yield stress, since no buckling mechanism is present. If one
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Fig. 4. Results with the applied stresses normalised respectively by the longitudinal and
transverse strength predictions, for § < 1-5, showing also eqn (1) and Von Mises curve.
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Fig. 5. Mean value and standard deviation of the modelling variable for the various
interaction equations.

assumes that these plates will have their strength described by the Von
Mises curve the other plates in the data base will be much closer to the
BS5400 interaction curve.

The bias of the different interaction curves is quantified as the distance
between the point and the interaction curve in the R, — R, plane. For the
ABS formulation (BS 5400) it resulted in a bias of 0-06 and a standard
deviation of 0-21, as indicated in Fig. S.

With the present suggestion of using the Von Mises curve for the stocky
plates and the circle (eqn (1)) for the others, the bias was reduced from
0-06 to —0-01 and the standard deviation to 0-19 as also indicated in the
same figure under GS,G.

Although the method proposed gives good results, an inspection of
Fig. 4 shows that there are a large number of plates with a transverse
strength larger than the critical stress but on the order of magnitude of the
yield stress. Those plates have a slenderness smaller than 1-3 which leads
to the hypothesis that in the biaxial loading of the stocky plates with
o # 1, there is an interaction between the longitudinal and transverse
collapse modes leading to an increased ultimate transverse strength.

Since in these cases the collapse mode is closer to the one of a plate with



Compressive strength of rectangular plates 243

longitudinal compression, it is proposed to assess their strength by the
longitudinal strength formula (eqn (2)) instead of the transverse one
(eqn (3)). Applying this method, the standard deviation which was 0-22 for
the Von Mises curve is reduced to 0-18 for the stocky plates. Therefore
this is considered as the best procedure to predict the strength of biaxially
loaded plates.

The results indicated in Fig. 5 as GS,G were obtained from prediction
equations that do not account for the effect of residual stresses. However,
in the tests of Becker the plates had residual stresses, which were induced
during the fabrication of the tubes. These longitudinal residual stresses
can be accounted for by reducing the predictions of eqn (2) accordingly,
before one uses it in defining R,.

The longitudinal residual stresses ¢, in a rectangular plate are given by:

% _ 27
o (b/0)-27 (14)

where 7t is the width of the yield tension zone at the edges of the plate.
The strength reduction due to these residual stresses can be represented by
the multiplicative factor B,:
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Fig. 6. Results with the transverse stress normalised by the transverse strength when
B > 1.3 and by the longitudinal strength when 8 < 1.3, which is the final proposal.
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. E
B.=1-Ag=1-22t (15)
o, E
where the effects of plastic deformations are accounted for by the tangent
modulus of elasticity E;, which is given by Ref. 20:

=13 forl <p <25 (16a)
—=1for =25 (16b)

in a more simplified version of the formula given in Ref. 2.
Now the strength of plates with longitudinal residual stresses ¢, can be
predicted as:

b = D By (17

Valsgard’s method can also account explicitly for the level of residual
stresses. This is accomplished in the way R, is defined in eqn (1). Instead
of being given by eqn (2), which is valid for the case of no residual stresses,
it becomes:

(Z)xr = Lg
BB
In principle, in the method proposed here the effects of residual stresses
could also be accounted for in the same way. However, the results in Fig. 5
indicate that the residual error before accounting for initial defects is
already very small. Thus it was chosen to perform a regression of those
errors on the levels of residual stresses and initial distortions so as to
define a correction factor R,s that would modify eqn (1) to become:

LT (18)

R+ R.=R;}, (19)
The analysis of all the data lead to the following regression:
Rys=113-042T,—0:080 (20)

where T, = a,/0, is the non dimensional residual stress ratio and 4 is the
amplitude of the initial distortions. Using eqns (19) and (20) instead of
eqn (1) to predict the plate strength an improvement is obtained in the
standard deviation of the residuals, which decreases from 0-19 to 0-17, as
indicated in Fig. 5 under GS,G-C. One has to note that the first result
(GS,G) was obtained using the Von Mises equation for plates with f < 1-3
while the circular interaction was used for all slendernesses in GS,G-C,
but normalising the transverse stress of the stocky plates with the
longitudinal ultimate strength, eqn (2).
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The previous discussion has indicated that the plate behaviour was
different for plates in the stocky range (f < 1-3) and in the slender zone
(B > 1-3). In the first case the collapse is basically plastic, and thus the
residual stresses are less important than the initial distortions. The
contrary happens for slender plates which fail in the elastic and elasto-
plastic regime. This is clearly shown in the results when performing the
regression on the two data sets:

R =111 -016T, —2:016 +027R.. f < 1-3 (21a)
Ry =112~ 0-587, — 0-075 + 0-04R’. § > 1-3 (21b)

where R is a percentage measure of the longitudinal loading:

R.=R./\[R2+R (21¢)

which appears to have an influence in stocky plates but seems to be of no
importance for slender plates, as is inferred from the coefficients of
eqn (21).

If one now uses eqns (19) and (21) instead of eqn (1), the standard
deviation of the errors comes down from 0-19 to 0-13, which is very
satisfactory as a model uncertainty of a design method. Figure 7 shows the
plot of the results after the correction has been applied and it can be
observed that a relatively small spreading is apparent.

The residual errors have been plotted in Fig. 8 as a function of plate
slenderness, showing that they are not dependent on f. Figure 9 shows a
similar plot in which the residuals are shown as a function of the
percentage of longitudinal load R} showing again that no bias exists.

Another check that has been made is the effect of the plate aspect ratio
on the results. Table 1 shows a summary of the results indicating that no
major differences exists for the bias in each group of «.

A slight tendency may be present, with the bias changing from —8% for
a=1to 5% for a = 5 or 6 but the effect is not worth accounting for. The
standard deviation is larger for « = 3, but this is probably the result of
having results from various different sources in that case, which brings an
additional source of variability.

Finally the results have been grouped by author, as indicated in Table 2.
Its inspection shows that the results of Becker have the largest mean error
and standard deviation. This is possibly the result of various factors
among which are the fact that the test series was made in small specimens
and that they had different initial distortions. However, although the
results of Becker have these larger values, they are not significantly
different from the others, which indicates that the results have good
consistency despite being from several origins.
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Fig. 7. Results with the applied stress normalised by the present proposal corrected for the
effects of residual stresses.

Figure 10 shows the relative occurrence of deviations of the
experimental and numerical points from the interaction curves in the
plane of R, and R,, as shown in Figs 1 and 9. The results have been
obtained for the various proposals of interaction curves and it is apparent
that the present proposal (GS,G) leads to a stronger concentration around
the value of 0-0.

To assess the performance of eqns (19) and (21), a model error B, can
be defined as:

JR2+R2—R; =B, 22)

For an unbiased formula this quantity should have a mean value of
zero and to improve the precision of the formula, the standard devia-
tion should be as small as possible. Table 3 summarises the character-
istics of this parameter as calculated from the numerical data in the
case of the ABS formulation (eqns (1), (4) and (6)), Faulkner formula-
tion (eqns (2), (7) and (8)), and the present one (eqns (2), (3), (19) and
(21)). It is shown that the present formulation is an unbiased one and
that the standard deviation is significantly decreased compared with the
two others.
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Fig. 8. Deviation of the results from the proposed interaction curve, as a function of
slenderness, after applying the corrections for the residual stresses.

TABLE 1
Statistics of the Residual
Errors as a Function of the
Plate Aspect Ratio

a n AVG STD

42 -008 0-06
3 -002 0-03
320 0-01 0-14
14 -0.02 0-07
4 0-06 0-03

2 0-04 0-05

[ R P R S

All 385 —0-00 013

3 BIAXIAL LOADING AND LATERAL PRESSURE

In general, lateral pressure on panels causes out-of-plane displacements in
a mode that is one half wave in both directions. These out-of-plane
deflections will decrease the plate strength whenever they coincide with the
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level of longitudinal loading, after applying the corrections for the residual stresses.

TABLE 2
Statistics of the Residuals for the Data of Each
Author, Indicating Whether the Results are
Numerical (N) or Experimental (E)

Reference n AVG STD
Dowling (1979) (N) 233 —-0-01 0-15
Becker (1970) (E) 18 007 013
Stonor (1983) (E) 16 —-001 0-07
Becker (1977) (E) 8 0-04 0-22
Dier (1980) (N) 110 —0-01 0-09
All 285  —0-00 0-13

main buckling mode and they will increase the plate strength otherwise.
Thus, in the case of biaxial strength of long panels, that type of deflection
tends to decrease the transverse strength and to increase the longitudinal
strength, the net effect depending on the specific situation.

There are not many publications dealing with this complicated problem,
although one is able to find some analytical, numerical and experimental
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Fig. 10. Relative frequency of the deviation distance of the results from the interaction
curves for different proposals.

TABLE 3
Statistics of the Residuals from the
Different Methods

ABS  Faulkner  GS.G

AVG 021 -0-06 0-00
Ccov 031 0-24 0-13

results in the literature. Steen and Valsgard'® presented a design method
for plates subjected to biaxial compression and lateral pressure, which was
based on deriving simplified non-linear elastic response curves for the in-
plane and laterally loaded cases and combining the local stresses obtained
into an equivalent stress criterion. The elastic buckling and the initial
postbuckling behaviour of plates was described by the perturbation theory
of Budiansky,?' which is based on the non-linear Von Karman equations
and includes the effect of geometrical imperfections. The non-linear elastic
behaviour of the plate under lateral load was then addressed. The stresses
corresponding to both types of behaviour are assessed and combined in a
Von Mises equivalent stress which is used as a criterion for the initial yield
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and the ultimate collapse load. Interaction curves are provided for square
plates of different slenderness and degree of initial imperfection.

Dier and Dowling16 conducted an extensive numerical study dealing
with plates with an aspect ratio of 3 and with square plates with simply
supported and fully clamped boundary conditions. The plates had b/t
ratios of 40, 60 and 80 and different levels of initial imperfections and
residual stresses. The results were obtained for different levels of lateral
pressure and they were shown in the form of interaction curves.

Experimental results are also scarce. Becker et al?* conducted some
tests on the square tubes that were described previously. Now transverse
load was also applied as well as internal pressure. Further experimental
results were presented by Yoshiki et al.** Yamamoto et al.** and Okada
et al.,® although all of them are of plates under uniaxial load and lateral
pressure.

In general the experimental and the numerical results allow one to say
that the transverse strength of the plates is significantly affected by lateral
pressure, while the effect on the longitudinal strength is small. The lateral
pressure has also an effect of decreasing the sensitivity of plate strength to
initial imperfections.

Dier and Dowling'? have proposed that the lateral pressure could be
represented by a non-dimensional parameter:

Q1 = g.E/o (23)

where ¢, is the intensity of the lateral pressure. On the other hand, all the
Japanese authors use an alternative formulation:

b
ou =22 =0 (24)

which includes also some information on plate geometry. The first
formulation was adopted here because it is independent of the plate
geometry.

The data available consists of 373 points which have been plotted in
Fig.18 where both the longitudinal and transverse stresses have been
normalised by the yield strength i.e. T, = 0./0, and T, = g, /a,. The large
scatter that is apparent was slightly reduced in Fig. 19 when the results
were normalised by the strength predictions of biaxially loaded plates
without lateral pressure (eqn (1)).

An inspection of the results allows one to conclude that the lateral load
induces significant degradation of strength, which is dependent on the
load intensity and on the plate slenderness. Thus a formulation that
accounts explicitly for those effects is required. The effect of the lateral
pressure was accounted by including an additional term Rq to the inter-
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action equation used for the biaxial load (eqn (1)). Different options have
been considered and the one finally adopted has the form:

R—Ro=0 (25a)
where
R*=RI+ R} (25b)

The effect of the lateral pressure was modelled by a regression equation,
dependent both on Q; and on . Different types of relations were tested
and the one which showed best results was of the form:

Ro=A4-BQ.p (26)

where A and B are regression coefficients.

The results of the regression on the various sources of data are
summarised in Table 4 which indicates that for all data, the effect of
lateral pressure can be summarised as:

Ry =10-0116Q, p* (27)

which should be introduced in eqn (25) to give the interaction equation for
biaxially loaded plates with lateral pressure. As indicated in Table 4 this
equation has a correlation coefficient, p, of 0-65 and the standard
deviation of the errors is 0-16.

As shown in Figs 11 and 12 some of the data points had one of the load
components in tension, despite the fact that most of them had both in
compression. If one uses only the points corresponding to biaxial
compression, their number reduces to 235 but eqn (27) is almost unchan-
ged. In fact, the regression coefficient changes from 0-116 to 0-117, the

TABLE 4
Regression. Coefficients of eqn (25), Correlation Coefficient (p) and
Standard Deviation (std) for Various Data Sets and Summary of All
Data (373) and of the Ones Only in Compression (235)

Author Load n A B p std
Dier Biaxial 235 099 0112 082 011
Y oshiki Uniaxial 25 1-09 0-153 0.58 009
Yamamoto Uniaxial 23 0-90 0-112 084 006
Okada Uniaxial 18 1-.19 -0-030 0-18 007
Becker Biaxial 72 0-90 0010 004 023
All - 373 1-00 0-116 065 0-16

Compression 235 1-00 0-117 075 014




252

1.0
09
0g
07
06
0.5
04
03
0.2
Q)
00

01

C. Guedes Soares, J. M. Gordo

- L
0
L
L ° Q o
o o
- 0p [go? © ° o
0 “D 8 o P
™ o
B%{o 5 O fa 3] a
B Oons o0p
e} o o
D 2] a o} o
[ @ ° , ° ;
o o
= 1 °p & o o ©
o B S o o
L ! g& a o
) 7 g ogle © ©
- £ QL o géj %o ® i 0 D g
° o ggho®aFdo” "°
o k-] FARE
0
L @ ‘b o 3
o
1 A 4 I3 1 A 1 1 1 A 1 .. 1
0.2 0.0 0.2 0.4 0.6 08 10

Fig. 11. Numerical and experimental results of plates subjected to biaxial load and lateral

14
13
12
1.1
10
09
08
07
06
0.5
04
03
0.2
0.1
0.0
0.1
02
03

pressure normalised by the yield stress.

| o
2]
- %G(x’ oo a
B o “!1) Eug 52} e a o
Q (5]
- oo ‘Df Ogf o o° o @ o
L b o
og % UC& % o OCb BD o (]
- o Og@ aoC 8 =) ) ja]
- a 55} b o ; I%BD o o
5]
I DB ‘g oo o Dg [s]
- g} o [=]s] 2]
' o o go o]
) & a °
L °, @ OUD l:h&bu o
s @ &opg @0
o 38 t?é' ol
o g oBO;
L 'Qb )X 5
L a
Fi 1 1 A A 1 i 1 4 . 1 % 1 i
L3 .1 01 03 05 R 0.7 09 L1

Fig. 12. Numerical and experimental results of plates subjected to biaxial load and lateral
pressure normalised by the predictions of the strength of biaxially loaded plates without

account of lateral pressure.



Compressive strength of rectangular plates 253

correlation coefficient increases from 0-65 to 0-75 and the standard
deviation of the errors decreases from 0-16 to 0-14.

Table 4 shows that in general the effect of lateral pressure represented
by the regression coefficient B varies somewhat from author to author. In
the data from Yoshiki et al.'® a significantly larger effect of the lateral
pressure is indicated in the larger regression coefficient (0-153). The data
from Okada er al.?' show a negative coefficient indicating that the plates
would become stronger with Q #%, which seems surprising. Finally Becker
et al. have conducted two series of tests in 1970 and 1977. If the two sets of
data are treated separately one obtains 0-08 and 0-02 for the coefficient B
which is 0-01 for all data. Thus one can see that there are some differences
between the experimental data although the numerical results of Dier and
Dowling'? and the experimental ones of Yamamoto et al.*® are in agree-
ment.

At any rate the numerical data of Dier and Dowling'? is more consis-
tent than the experimental one and is equally spread in the R, — R, plane,
as shown in Fig. 13. Figure 14 shows all data after the corrections of eqns
(25) and (27) are applied. It is apparent that the spreading increases only
slightly, but it is greater for pure longitudinal loading (R, = 0) or pure
transverse loading (R, = 0) combined with lateral pressure.

Table S presents a numerical summary of the results of applying eqn (25)
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Fig. 13. Numerical results of plates with biaxial load and lateral pressure corrected for the
effect of lateral pressure.
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Fig. 14. Experimental and numerical results of the collapse of plates with biaxial load and
lateral pressure.

to the data. In fact, it shows the statistics of the modelling factor Bq
defined as:

By =R+ Rq (28)

which is plotted in Fig. 15. The mean values that are indicated correspond
to the right hand side of eqn (25a) which are only 1-0 when the lateral
pressure correction is introduced. There is a difference of 11% from
accounting for lateral pressure. The standard deviation of the residuals is
reduced from 0-21 to 0-16, but the improvement in the coefficient of
variation is even greater, from 0-23 to 0-16.

It is apparent from comparing Fig. 12 with Fig. 14 that the results for
plates without transverse load have a larger variability than the ones with
transverse load. Although the transverse loading is an additional factor
that could bring additional variability, it finishes up having a stabilising
effect and decreasing the variability of the results.

The residual of eqn (26) are shown in Fig. 16 as a function of the
parameter Q; f3 ?_indicating clearly that there exists no bias, and thus that
eqn (28) is adequate to describe the influence of lateral pressure.

It has been investigated if the plate aspect ratio has any influence in the
results. Table 6 summarises the mean value and standard deviation of the
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Fig. 15. Relative frequency of the deviation of the numerical results from the interaction
curve proposed.
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Fig. 16. Residuals of the numerical results of plates under biaxial compression and lateral
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TABLE 6
Mean Value of the Model Factor Bq for Different Sets of
Data, Function of « and of the Longitudinal Residual
Stresses, o,

a Orx /00 n Mean  Std

— 005 020 040

1 1-05 095 094 89 099 010
2 1-07 0-99 i3 1-05 0-09
3 093 105 099 093 234 0-98 0-17
4 1.27 9 1-27 0-11
5 0-96 8 096 015

100 1.05 098 094 373 1.00 016

[
-

errors after applying eqns (26) and (28) grouped in classes of different
aspect ratio, no significant differences between classes have been verified
in the effect of the residual stresses. Table 6 shows also the mean value of
the residuals as a function of the level of residual stresses. It can be
observed that there is a tendency for this value to decrease with the
residual stresses but, since the value is not very large, it has not been
accounted explicitly in this formulation.

4 CONCLUDING REMARKS

A survey has been provided of the available results concerning the collapse
strength of rectangular plates under combined in-plane compression
including the effect of lateral loading. These results were used as a basis to
derive strength assessment formulas.

These equations, which are basically interaction relations between the
effects of the various simultaneous loads, predict the average collapse
strength of the plate element and are thus strength assessment
formulations.

The method proposed here for the assessment of the strength of plate
under biaxial load builds upon the interaction eqn (1), which is already
adopted in existing codes like for example the British Standard, Det
Norske Veritas and the American Bureau of Shipping.

However, it is proposed here that the formula should only be used for
plates with # > 1-3 and that for stockier plates the von Mises equation is
adopted.

The proposed method was further extended to account explicitly for the
effect of initial defects, as given by eqns (18)—(20). It was shown that the
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results of this method are not dependent on the plate slenderness or aspect
ratio.

The effect of lateral pressure was accounted for by extending the
interaction eqn (1) and the calibration with data led to the proposal of
eqns (25)—(27). These equations were shown to perform well for different
aspect ratios and it was concluded that it was not necessary to account
explicitly for the residual stresses.

The strength assessment methods proposed were shown to be unbiased
and to have a satisfactory model uncertainty level, with values on the order
of 15% which are very difficult to improve for the case of combined loads.
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