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ABSTRACT

This paper presents a proposal for a new design equation to predict the
collapse strength of plates under transverse compression both with restrained
and unrestrained boundary conditions. The equation is developed from and
calibrated with experimental and numerical results which allows an assess-
ment of the uncertainty involved in its application. Finally, the proposed
equation is compared with the predictions of a non-linear finite element code,
which was used to verify in a systematic fashion the effect of changing some
of the governing parameters.

NOTATION

Plate length

Plate width

Effective plate width

Modelling factor for the strength of unrestrained plates [eqn
(17)]

Modelling factor for transverse strength [eqn (15)]

Young’s modulus of elasticity

Buckling coefficient [eqn (13)]

Reduction factor for longitudinal strength of a plate with
aspect ratio « relative to a square plate strength [eqn (9)]
Plate thickness

Amplitude of the initial imperfections

= a/b—Aspect ratio

= b/a—Transverse aspect ratio [eqns (10) and (11)]

= b/No,/E—Plate slenderness
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B, = a/No,/E—Transverse plate slenderness [eqns (10) and (11)]

o, Longitudinal strength ratio

bra Longitudinal strength ratio of a plate with a < 1

b, Transverse strength ratio

by Strength ratio of the midfield of a plate loaded transversely
[eqn (8)]

b,, Ultimate transverse strength ratio present proposal

by, Ultimate transverse strength ratio of unrestrained plates

v Poisson’s ratio

¥ Coefficient accounting for nonuniform load distribution [eqn
(13)]

T Critical elastic stress

Oyer Critical stress in the transverse direction

o. Buckling stress

oy Edge stress

o Yield stress

a, Ultimate stress

1 INTRODUCTION

The strength of plates under transverse loading was an important problem
several years ago when transverse stiffening was frequently used in ship struc-
tures. With the increasing use of longitudinal stiffening in ship structures atten-
tion has concentrated more on plates with aspect ratios greater than 1, i.e. on
plates loaded in the longitudinal direction. However, in offshore and civil
engineering structures, where biaxial loading is present and the transverse
loading is not negligible, knowledge of the plate behaviour under transverse
loading is important.

When the plate aspect ratio becomes significantly smaller than unity as
happen in the transverse compression case, the mode of plate failure becomes
different in that the central part of the plate does not feel the restraining effect
of the short edges, and behaves like a column. Unlike plates, columns have
negligible post-buckling resistance,' which indicates that the ultimate stress of
plates due to transverse compression would be much less than to longitudinal
compression. Therefore, it is important to quantify the strength of plates under
transverse loading.

In any consideration of transverse plate strength, the influence of weld-
induced residual stresses is expected to be small because the short edges are
well away from the centre of the plate. The influence of initial distortions
should also be small in this case, due to the presence of modes of distortion
in the longitudinal direction of the plate greater than 1 which tend to increase
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the strength of the plate. These modes correspond to higher critical elastic
buckling stresses than the one of a plate with a single half-wave. This increase
in strength counteracts the increase in the amplitude of distortions.

The shape of the imperfection that would degrade the plate strength more
is in the form of a half-sine wave in the transverse direction. This shape may
exist when the plate is subjected only to transverse loading. However, in
biaxially loaded plates the simultaneous presence of longitudinal load will
tend to induce a higher mode longitudinal deformation pattern with the buckles
going up and down alternately, which may even increase the transverse plate
strength. This effect is of the same nature of the one related to initial imperfec-
tions of mode higher than 1, but snap effects are of different importance.

This work tackles the problem of deriving the design equation by starting
with an assessment of the model uncertainty in existing design equations and
by developing a new one which has a model uncertainty with a bias close to
unity. The model uncertainty is assessed by comparing available experimental
and numerical examples with the model predictions, as was performed in ref.
2 for the case of longitudinal strength.

2 EXISTING FORMULATIONS OF TRANSVERSE PLATE
STRENGTH UNDER COMPRESSION

For the case of the simply supported plate, Bleich® derived one of the earliest
explicit expressions for the effective width b, as a function of edge stress, 0.4

E_1+a4+ 2 o, 0
b 1+3a* 1+3a*0.,

where a = a/b is the aspect ratio, a is the plate length, & is its width and o,
is the critical longitudinal buckling stress. Carlsen* conducted a numerical
study using a finite-difference code and concluded that Bleich’s formula was
too optimistic for high levels of compression.

One of the earlier formulations of ultimate transverse plate strength is due
to Schultz,” who presented results from a Galerkin solution of the Von Kar-
man’s large deflection plate equations. Another one is due to Blanc,® which
has even been adopted by some Classification Societies. He based his formu-
lation on the assumption that after plate buckling the two edge strips would
be carrying the whole load. Faulkner et al.” transformed it to an ultimate
effective width formula which implies that the edge strips are at the yield
stress:
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g, 09 19 0.9
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where f3 is the plate slenderness and oy, is the yield stress:
b Jo,
-7 3
B=2VE (3)

which is a function of the breadth & and thickness ¢ of the plate, as well as
of the material properties, o, and modulus of elasticity E.

Becker and Colao® assumed that the transverse strength of a plate would
decrease from the square plate strength as a function of « which they proposed
in the form of a multiplication factor y:

1

=@l ®

y

They proposed a design equation for the transverse compression strength of
the plate, which was based on an effective width approach and which was
updated by Becker® to read:

¢, =0.923 {3 (b) + {1 2 (b—ﬂ (1- 0y 2+ 0.077}, )
‘ al\b al\b ors

where C is a degradation coefficient that is zero for a perfect plate and 1 for
a plate with imperfections and o, is the transverse elastic critical strength.

Valsgard'® conducted a series of calculations using a finite-difference code
to predict the transverse compression strength of plates with an aspect ratio
of 3 and compared them with the predictions of the methods of Blanc—
Faulkner and Schultz. He concluded that both formulations over-estimated
the real plate strength for stocky plates and under-estimated the strength of
slender plates.

Valsgard proposed a new formula for the ultimate strength which is based
on a principle similar to Blanc’s:

1\? 1
¢y=ﬁ=$+ 0.08 - (1 +—) . (1 —a> with a maximum of 1.0 (6)

o, « B?

where ¢, is the uniaxial compression strength of a simply supported square
plate according to Faulkner:!!
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The rationale behind his approach is to consider that the plate can be divided
into two fields. The first one is adjacent to the transverse edges and due to
its proximity to the edges, it is considered to be part of a square plate and
thus to have a strength ratio equal to ¢,. The middle of the plate constitutes
the second zone, whose strength was considered by Blanc to be the buckling
strength, but Valsgard fitted it to the results of his numerical calculations
leading to:

¢X:

2
¢, = 0.08 - (1 + é) . ®)
By varying the aspect ratio, eqn (6) can predict the strength of square plates.
In this case, the prediction of the formula should be equal to the uniaxial
longitudinal compression strength. However, the numerical results of Valsgard
predict too high values of strength in those cases as concluded in the analysis
reported hereafter.

The existing formulae of plate transverse compression strength are based
on an assumption about the mode of plate failure which is valid for long
plates, i.e. for aspect ratios larger than 2. The range of plate dimensions with
an aspect ratio between 1 and 2 will not be well represented by those formulae.

The case of a plate in transverse compression with an aspect ratio between
1 and 2 is the same as a longitudinally loaded plate with aspect ratio between
1 and 0.5. This case has been studied by Guedes Soares and Faulkner'? who
derived a model correction factor R, that reduces the square plate strength
predictions to ones applicable to a plate of lower aspect ratio, «, = 1/a, so that:

(bxa = ¢xRa fOr 10 = B = 35 (9)

where ¢, is the square plate strength given by eqn (7) and ¢,,, is the longitudi-
nal strength of a plate with aspect ratio a, or, which is the same, the transverse
compression strength of a plate with aspect ratio a.

The strength reduction factor was chosen to be of the form:

R,=1+(A-BB)1-a) (10)

which becomes unity when o, =1 and decreases with increasing slenderness,
as was observed in the data. The longitudinal slenderness of a plate with low
aspect ratio is defined as By=a/r\/<rolE. Estimation of the regression coef-
ficients A and B from the data lead to the proposed form of:
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R,=1+(055-0.168,)(1-a,) for 0.5=<a,=<10. (11)

The critical transverse compression strength of plate elements derived from
elastic analysis leads to the Bryan elastic buckling stress. Some codes, like
the Rules of the American Bureau of Shipping (ABS), use this critical elastic
stress as design stress combined with the Johnson-Ostenfeld formulation to
account for the effect of plastic deformations. The critical buckling strength
o, of a plate is equal to the elastic buckling strength o.:

oo _0.__ ™ K
o, o0, 12(1-1)pB

f

for o.=0.50, (12)

when buckling occurs in the elastic range, i.e. 0. =< 0.50,. Poisson’s ratio v
is 0.3 for steel plates and the buckling coefficient K accounts for the type of
loading and boundary conditions. According to ABS rules, for a wide plate
with linearly varying transverse loading this factor is given by:

k={1+2)- 2L foro=y=1 (13)
S\t r0SYE

where the factor ¢ is such that when the stresses on one end of a transverse
edge of the plate are o, they are -0 on the other one. Thus, for plates under
uniform compressive stresses ¢ = 1.

When the predicted strength is greater than half the yield stress, the collapse
strength is given by:

< =1--"2 fora. > 050, (14)

which implies an elasto-plastic collapse.

3 ANALYSIS OF EXISTING RESULTS

There is only a small number of results available for the transverse strength
of plate elements.>'*~'® Becker and co-workers®'? presented results of exper-
iments on small tubes of square cross-section. This type of experiment has the
drawback of not allowing a very good definition of the boundary conditions at
the plate edges, as will become clear in the discussion of the results. Bradfield
and Porter Goff'® tested eight plates with low aspect ratio, but only four of
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them correspond to transversely loaded plates since the remainder are
square plates.

Numerical results are available from Dowling ef al.'* and Valsgard.'® In
these cases the boundary conditions are defined precisely and one is able to
assess their effect on the plate strength. Restrained conditions correspond to
the situation where the in-plane displacements perpendicular to the edge are
zero, while in constrained conditions the edge is specified to remain straight,
but is free to pull-in. Unrestrained conditions imply that all in-plane displace-
ments are free.

The available experimental results indicate, in general, a strength lower than
the predicted values, as can be observed in Table 1, which summarises the
results of experiments and numerical predictions of plate transverse com-
pression strength. To provide a common base for the comparisons, both types
of results have been normalised by the predictions of eqns (2), (6) and (12).

In the case of the formulation of Blanc and Faulkner [eqn (2)] the average
of the normalised experimental results was 0.70, while it was 0.85 for the
numerical results, i.e. a difference of ca 18%. In the case of Valsgard’s formu-
lation [eqn (6)] these values were, respectively, 0.89 and 1.11, a 20% differ-
ence. These differences may be due to the presence of weld-induced stresses
and initial distortions in the experimental results which are not accounted for
explicitly in eqns (2) and (6). This is further supported by the observation
that the experimental results show a larger variability than the numerical ones,
indicating the influence of fabrication factors and experimental errors.

TABLE 1
Results of 20 Tests and 12 Numerical Results for the Ultimate Transverse Compression
Strength of Plates Normalised by Faulkner’s Formulation [eqn (2)], Valsgard’s Approach [egn
(6)], the Present Proposal (GS,G) [eqn (15)], and the ABS Formulation [eqns (12)—(14)]

References B a b/t Exper. ABS  Faulk. Valsg. GSG
d)exp d)exr/ ¢y ¢ex[/ v (bexr/ ¢_\' (bexp/ d’y

Becker'® Average 220 3 60 0.30 0.90 0.52 0.76 0.72
S.D. 082 0 22 0.23 0.05 0.15 0.36 0.36
Becker® Average 290 3 50 0.22 1.25 0.57 0.72 0.66
S.D. 1.16 0O 20 0.11 0.36 0.06 0.20 021
Becker® Average 2.90 1.5 50 0.50 2.12 0.92 1.11 0.93
S.D. 1.16 0 20 0.14 1.05 0.12 0.03 0.11

Bradfield'® Average 149  1.63 33 0.74 1.00 0.84 1.04 1.02
S.D. 056 0.58 13 0.16 0.08 0.23 0.16 0.20

All tests Average 2.19 23 45 0.47 1.17 0.70 0.89 0.84
S.D. 1.09 0.79 21 0.28 0.52 0.23 0.27 0.29
Valsgard'® Average 2.18 2.8 55 0.51 1.54 0.85 1.11 1.01

S.D. 0.97 1.5 25 0.25 0.80 0.22 0.16 0.07
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Therefore, it seems more appropriate to use only the numerical results as
a basis to calibrate the design formulae, considering also that they allow better
control of the boundary conditions. From the available results, the ones of
Valsgard'” represent the most complete and consistent set of data and therefore
they were adopted as the reference data against which the presently proposed
equation was developed.

Valsgard’s design equation [eqn (6)] was the one that showed both a smaller
bias and a smaller uncertainty. Thus, it was chosen as the basic equation to
be improved.

The present proposal for transverse compression strength was obtained by
modifying Valsgard’s formulation ¢, [eqn (6)] by a model parameter B,:

¢, = ¢,B,. (15)
The model parameter is represented by:
B, = (a\B + a)(a;a + a,) (16a)

where the g;s are regression coefficients. A regression analysis of the numeri-
cal data indicated that:

B, =0.589 + 0.130 + 0.2528 — 0.069aB. (16b)

The performance of eqns (15) and (16) has been checked in the same
fashion as eqns (2) and (6), and the results are included in the last columns
of Tables 1 and 2. This formula has been calibrated with the numerical results
of Valsgard'® and in that case it had a bias of 1.01 and the standard deviation
of the errors was reduced to 7% as compared with the 16% from eqn (6) and
22% from eqn (2).

The ABS strength formulation is based on the Johnson—-Ostenfeld approach
and the critical elastic strength is represented by eqns (12)—(14). The results
in Table 2 indicate that this formulation is conservative by ca 33% on average
and has a large model uncertainty of 68%. For the experimental tests the
formulation is conservative by 17% and for the numerical results by 54%
(Table 1). It is clear that the equation gives better results for the experimental
tests than for the numerical predictions, although the latter are preferred for
calibration. The results are very conservative for 3 greater than 3.5 (Table 2)
and there is a large sensitivity to the aspect ratio. On the other hand, the ABS
strength formulation agrees well with the experimental results in the range of
slenderness below 2.5. Even for the combined data included in Table 2 it
shows good performance for 8 < 2.5, which is in fact the important range in
several types of structures.
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TABLE 2

223

Tests and Numerical Results of the Ultimate Transverse Compression Strength Sorted
by Slenderness

Refer. B a b/t Measur ABS Faulk. Valsg. GS.G

¢exp ¢e.\'[/ A ¢exl/ ¢)’ d)exr/ ¢,\' d)e,r// ¥
16 0.63 2.5 15 1.00 1.09 1.39 1.00 1.03
16 0.94 1.7 23 0.97 1.11 0.97 1.30 1.39
10 0.99 1.0 25 1.05 1.12 0.98 1.05 1.16
10 0.99 20 25 0.68 0.82 0.68 1.02 1.06
10 0.9 3.0 25 0.60 0.76 0.61 1.08 1.05
10 0.99 5.0 25 0.54 0.72 0.57 1.17 1.02
16 0.99 25 24 0.77 0.96 0.78 1.29 1.30
for Average 0.94 0.85 1.13 1.15

B<1 Stand. Dev. 0.16 0.26 0.12 0.13

13 1.10 3.0 30 0.68 0.93 0.76 1.34 1.30
10 1.58 1.0 40 0.86 1.04 0.76 1.00 0.99
10 1.58 20 40 0.49 0.87 0.65 0.95 0.92
10 1.58 3.0 40 0.40 0.88 0.64 1.01 0.96
10 1.58 5.0 40 0.32 0.82 0.62 1.07 0.98
16 1.71 1.7 35 0.55 0.98 0.71 0.99 0.95
16 1.71 1.7 35 0.56 1.00 0.73 1.02 0.98
16 1.72 1.0 38 0.70 0.88 0.65 0.85 0.82
16 1.72 1.0 38 0.74 0.93 0.69 0.90 0.87
8 1.74 1.5 30 0.65 1.08 0.80 1.09 1.04
8 1.74 3.0 30 0.38 1.02 0.68 1.03 0.97
8 1.74 3.0 30 0.32 0.87 0.58 0.88 0.83
8 1.74 3.0 30 0.30 0.81 0.54 0.81 0.77
13 1.84 3.0 50 0.28 0.85 0.54 0.80 0.75
for Average 0.93 0.67 0.98 0.94

B<2 Stand. Dev. 0.08 0.08 0.13 0.13

16 2.48 1.0 59 0.62 1.07 0.77 0.96 0.82
13 2.57 3.0 70 0.14 0.84 0.40 0.50 0.46
10 2.63 1.0 67 0.77 1.49 1.02 1.26 1.05
10 2.63 2.0 67 0.41 1.99 0.91 1.13 0.98
10 2.63 3.0 67 0.29 1.80 0.86 1.06 0.96
10 2.63 5.0 67 0.20 1.41 0.78 0.96 0.97

(continued)
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TABLE 2
(Continued)
Refer. B a b/t Measur ABS Faulk. Valsg. GS,.G
Derp b/ by e/ Py DS/ Dy Dey/Dy
for Average 1.43 0.79 0.98 0.87
<3 Stand. Dev. 0.39 0.19 0.23 0.20
13 3.30 3.0 90 0.10 0.96 0.38 0.42 0.37
10 3.51 1.0 89 0.77 2.64 1.35 1.58 1.16
10 3.51 2.0 89 0.38 3.28 1.16 2.29 1.03
10 3.51 3.0 89 0.26 2.87 1.08 1.15 1.02
10 3.51 5.0 89 0.16 2.04 0.93 0.94 1.03
for Average 2.36 0.98 1.08 0.92
B<4 Stand. Dev. 0.80 0.33 0.39 0.28
8 4.05 1.5 70 0.36 3.17 1.04 1.14 0.82
8 4.05 3.0 70 0.11 1.66 0.56 0.55 0.48
8 4.05 3.0 70 0.10 1.42 0.48 0.47 0.41
8 4.05 3.0 70 0.12 1.70 0.57 0.57 0.49
for all B Average 1.33 0.77 0.99 0.92
Stand. Dev. 0.68 0.24 0.25 0.24

Figures 1-4 show the different strength curves applicable for plate aspect
ratios of 1, 2, 3 and 5. For the lower aspect ratios it is apparent that the
proposed equation predicts lower strengths for stocky plates and higher ones
for slender plates. However, for large aspect ratios the present proposal
approaches Valsgard’s, i.e. the model parameter B, approaches unity.

Another feature that is of interest is the fact that the difference between
those formulations and the curve for infinite plate strength is significant for
small aspect ratios, but becomes small for an aspect ratio of 5.

Figure 5 shows all the experimental (E) and numerical (N) results indepen-
dently of the aspect ratio, normalised by the predictions of the present design
equation proposal. Apart from two numerical results with a strength around
0.35, which are both from Dowling,'* most of the numerical results lie close
to 1.0. However, the experimental results, in particular the ones of Becker et
al.," show a strong bias, with values around 1.3 for 8 = 1 and 0.4 for 8 = 3.5.
This figure illustrates well the fact that those results may be affected by the
adoption of the square tubes used in those experiments. This implies rotational
restraint, as well as weld-induced stresses at the edges. The low bias at high
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Fig. 1. Transverse compressive strength of plates with a/b =1, as given by different authors.
Faulkner’s curve represented here is given by eqn (2), but for correct use one should use eqn
(7). The labels in the figure indicate the reference from which the data was obtained.
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Fig. 2. Transverse compressive strength of plates with a/b =2, as given by different authors.
The labels in the figure indicate the reference from which the data was obtained.

slenderness was confirmed by additional experiments® for a slenderness near
4 and an aspect ratio of 3 (Figs 3 and 5).

An attempt has been made to include explicitly in the formulation the effect
of the weld-induced residual stresses and initial distortions. Much less data is
available indicating explicitly the value of these defects. Figures 6 and 7 indi-
cate the strength as a function of those parameters for the cases available.
Figure 6 shows a wide spread of results which do not allow any definite
conclusion to be drawn. Figure 7 shows, surprisingly, that most results lie
around 1.0, irrespective of the value of initial distortions, while one would
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Fig. 3. Transverse compressive strength of plates with a/b = 3, as given by different authors.
The labels in the figure indicate the reference from which the data was obtained.
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Fig. 4. Transverse compressive strength of plates with a/b =35, as given by different authors.
The labels in the figure indicate the reference from which the data was obtained.

expect that, with increasing initial deflections, eqn (15) would be predicting
weaker plates. At any rate, the available data does not support the inclusion
of an additional parameter in eqn (15) to account explicitly for the effect of
residual stresses or of initial distortions.

Rotational restraints along the edges of the plate are generally neglected
assuming that anti-symmetric lateral deformations take place in adjacent plate
fields. This is valid whenever lateral pressure loads are small.

The analysis of the results indicated in Table 3 shows that the boundary
conditions are important in determining the plate strength, especially for aspect
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Fig. 5. Experimental (E) and numerical (N) results normalised by the presently proposed
design equation.
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Fig. 6. Strength modelling factor as a function of residual stress level.

ratios smaller than 3. For plates with a =2 changing boundary conditions
from restrained to unrestrained can induce strength reductions of ca 20%,
while this is only 5% for plates with a = 5. The importance of modelling the
effect of boundary conditions has already been identified by Guedes Soares?
for the case of uniaxial compression.

Adopting the proposed eqn (15) to predict the transverse compression
strength of unrestrained plate elements, it is possible to define another multi-
plication factor B, which allows strength predictions for unrestrained plates
¢,, to be obtained from eqn (15):

b= b,B.. (17)

Using the few results given in Table 3, this factor was defined as:
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Fig. 7. Strength modelling factor as a function of the level of initial imperfections, w, normal-
ised by the plate thickness, .

TABLE 3
Ultimate Transverse Compression Strength of Plates with a
Slenderness 8=3.51 (b/t=89) for Two Different Boundary
Conditions and Ratio of ¢.,, with the Theoretical Predictions

of eqn (6), ¢,

! L - e/ P,
Restr. Unrestr. Restr. Unrestr.
2 0.38 0.30 1.03 0.83
3 0.26 0.22 1.02 0.88
5 0.16 0.15 1.03 0.98
B.=0.7 + 0.05a. (18)

Finally, it is worth mentioning that a wide plate is considered to have, in
general, an aspect ratio « at least larger than 2. In fact, this was the basis
used to derive the equations discussed in this section.

For plates with 1 = a <2 the mode of collapse assumed for transverse
compression strength modelling is no longer valid, i.e. the separation of the
plate into a central region and into two others adjacent to the edges becomes
less applicable. In these situations one could use the results derived by Guedes
Soares and Faulkner'? for the uniaxial longitudinal compression strength of
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plates with 0.5 = o = 1. These formulations [eqns (9)—(11)] would correspond
to the transverse strength of plates with 1 < a = 2.

The results of applying eqns (9) and (11) to the set of experiments and
numerical data used before is summarised in Table 4. They indicate that the
difference in bias between the two formulations is very small, but the data
set is too small to allow definite conclusions to be drawn for this range of
aspect ratios.

The design formulae proposed in eqns (15)-(18) were derived from cali-
brations with available numerical and experimental resuits.

TABLE 4
Comparison of the Predictions of eqns (9)~(11) (GS,F) with other Design Methods

References 3, « b/t Meas. ABS  Faulk. Valsg. GS,G GSF
by Do/ D/, b/, DoSD Do/ D,

Valsgard'® 0.99 1 25 1.05 1.12 0.98 1.05 1.16 1.05

1.58 1 40 0.86 1.04 0.76 1.00 0.99 1.00

1.98 2 25 0.68 0.82 0.68 1.02 1.06 0.81

2.63 1 67 0.77 1.49 1.02 1.26 1.05 1.26

2.96 3 25 0.60 0.76 0.61 1.08 1.05 1.01

3.16 2 40 0.49 0.87 0.65 0.95 0.92 0.89

All 222 1.7 37 0.74 1.02 0.78 1.06 1.04 1.00

numerical  0.77 0.8 15 0.18 0.24 0.16 0.10 0.07 0.14
S.D.

Bradfield'® 1.56 25 15 1.00 1.09 1.39 1.00 1.03 0.98

Bradfield'® 1.56 1.67 23 0.97 1.00 0.97 1.30 1.39 0.99

Bradfield'® 1.72 1 38 0.70 0.88 0.65 0.85 0.82 0.85

Bradfield'® 1.72 1 38 0.74 0.93 0.69 0.90 0.87 0.90

Bradfield'® 2.48 25 24 0.77 0.96 0.78 1.29 1.30 1.09

Bradfield'® 2.48 1 59 0.62 1.07 0.77 0.96 0.82 0.96

Becker®  2.61 1.5 30 0.65 1.08 0.80 1.09 1.04 1.00

Bradfield'® 2.85 1.67 25 0.55 0.98 0.71 0.99 0.95 0.91
Bradfield'® 2.85 1.67 35 0.56 1.00 0.73 1.02 0.98 0.94

Becker'*  3.30 3 30 0.68 0.93 0.76 1.33 1.30 1.30
All 2.31 1.8 33 0.72 1.01 0.83 1.07 1.05 0.99
experiments (.59 0.7 11 0.15 0.16 0.20 0.17 0.20 0.12
S.D.
All 2.28 1.72 34 0.73 1.01 0.81 1.07 1.05 0.99

plates 0.67 0.70 13 0.16 0.16 0.19 0.14 0.16 0.13
S.D.
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4 ASSESSMENT OF THE PERFORMANCE OF THE PROPOSED
APPROACH

The equations proposed here to evaluate the transverse compression strength
of rectangular plates [eqns (15) and (16)] were derived from existing exper-
imental and numerical results which did not necessarily cover the complete
range of slendernesses and aspect ratios. Therefore, in order to test the per-
formance of the formulation proposed in this work over the full range of
slendernesses and aspect ratios, the strength of a series of plates was computed
using a finite element program, which accounts for large deflections, elasto-
plastic behaviour and initial imperfections.'’

The range of plate slenderness covered lies between 0.85 and 4.23, and the
aspect ratio of the plates between 2 and 5. The initial imperfections were
chosen in such a way that the real collapse mode of the plate is coincident
with the lowest collapse mode (single half-wave). Their amplitudes are ca
0.18%, but all of the plates have more than one sinusoidal component in order
to have more realistic models without symmetry. The boundary conditions are
simply supported for all plates and the edges are forced to remain straight.
The ‘unloaded’ edges have no in-plane displacement during the loading which
corresponds to the restrained conditions. In these series of calculations residual
stresses were not imposed.

Table 5 summarises the main geometric parameters of the plates, the initial
imperfections and the corresponding transverse strength. Comparisons with
the proposed formula are given.

The most general conclusion is the confirmation that the results obtained
with finite element codes tend to predict higher values than those obtained in
experimental tests. The average of the normalised strength is very close to
1.0 and the coefficient of variation, COV, is 11%, which is a good value
considering that the effect of distortions it not explicitly accounted for in the
proposed design equations.

A more detailed analysis shows that this approximate formula predicts the
transverse strength of plates very well, especially at high aspect ratios. Stocky
plate strength prediction tends to be conservative. Intermediate slenderness
plates with low aspect ratio (@ < 3) have their strengths over estimated
(Fig. 8).

Another important feature of the plate behaviour under transverse loading
is that stocky plates collapse at much lower strains than slender ones. The
ultimate strain tends to increase with the slenderness but remains close to 1
when the slenderness is lower than 1.8. For slendernesses higher than 2.8 the
ultimate strain is always higher than 1.5 times the yield strain and no evidence
of load shedding after buckling may be detected, while for stocky plates the
decrease in the post-buckling strength is always present (Fig. 9). Also, the
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TABLE 5
Compression Strength of Transversely Loaded Plates Predicted by a Non-linear Finite Element
Code, and Compared with the Design Equation Predictions

o B Wona/(15) €/€ Pea ¢, bl b,
2 0.85 0.154 0.971 0.861 0.688 1.251
2 1.69 0.075 1.067 0.509 0.510 0.998
2 2.82 0.092 1.519 0.356 0.401 0.889
2 3.38 0.077 1.568 0.329 0.370 0.891
2 4.23 0.062 1.601 0.304 0.337 0.901
25 0.85 0.134 0.938 0.804 0.660 1.217
2.5 1.69 0.101 1.119 0439 0.441 0.995
25 2.82 0.080 1.610 0.301 0.335 0.897
2.5 3.38 0.084 1.553 0.271 0.306 0.887
2.5 423 0.081 1.588 0.246 0.275 0.894
3 0.85 0.114 0.915 0.767 0.648 1.184
3 1.69 0.129 1.026 0.416 0.396 1.052
3 2.82 0.103 2.428 0.262 0.260 0.901
3 3.38 0.086 2.540 0.241 0.261 0.921
3 4.23 0.098 2.730 0.217 0.232 0.935
4 0.85 0.113 0.876 0.738 0.643 1.146
4 1.69 0.098 1.064 0.358 0.339 1.056
4 2.82 0.078 1.557 0.219 0.231 0.946
4 3.38 0.081 1.584 0.191 0.203 0.942
4 4.23 0.078 1.545 0.165 0.172 0.956
5 0.85 0.122 0.818 0.718 0.654 1.098
5 1.69 0.105 1.027 0.330 0.307 1.076
5 2.82 0.084 1.500 0.194 0.193 1.005
5 3.38 0.088 1.570 0.166 0.163 1.014
5 4.23 0.084 1.515 0.142 0.131 1.082

tangent modulus is very different for these two slendernesses and even at the
very beginning of the load shortening curve the tangent modulus is much
lower than the Young’s modulus of the material in the case of the plate
with 8 =4.23.

The sensitivity of the formulation with the aspect ratio is low (Table 6) and
the spread of the results, ¢.,/¢,, tends to reduce as « increases. Note that a
COV of 4% with a =5 is a very good result, especially as the COV tends to
increase drastically at very high aspect ratios.

For a=2 and 2.5, it should be noted that in spite of the calculated results
being greater than the predictions on average, the average of the normalised
results is lower than unity. This is due to the very low predictions at low
slenderness for these aspect ratios (Fig. 8).
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Fig. 8. Summary of the transverse strength of plates calculated by the finite element code and
normalised by the strength given by egns (15) and (16b).
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Fig. 9. Average transverse stress—average strain of plates of aspect ratio 3 with transverse
loading and restrained edges.

TABLE 6
Summary of the Average Strength of Transversely Loaded Plates and Com-
parison with the Design Equation Predictions for each Aspect Ratio

a/b Avg &, Avg ¢, Avg b /b, COV ¢ /b,
2 0.472 0.461 0.979 0.143
25 0.412 0.403 0.978 0.144
3 0.381 0.365 0.999 0.119
4 0.334 0.318 1.009 0.089
5 0.310 0.290 1.055 0.040

All 0.382 0.367 1.005 0.109
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5 CONCLUDING REMARKS

The transverse compression strength of plate elements is assessed on the basis
of data collected from tests and numerical results. Comparisons with the pre-
dicted strength from several formulations are performed and based on these
results an alternative formula for transverse strength prediction is proposed.
Because of the qualitative differences between tests and numerical results,
especially for high plate slendernesses, the new formulation was derived based
on the numerical results. The reduction factor due to unrestrained unloaded
edges is also computed.

The proposed design equations [(15) and (16)] have been verified for a
series of plates, covering a wide range of aspect ratios and plate slendernesses,
whose transverse strength was determined from calculations performed with
a non-linear finite element code.
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